Обнаружение высоты звука с помощью SPICE

Посмотреть на TensorFlow.org Запускаем в Google Colab Посмотреть на GitHub Скачать блокнот См. Модель TF Hub

В этом колабе будет показано, как использовать модель SPICE, загруженную с TensorFlow Hub.

sudo apt-get install -q -y timidity libsndfile1
Reading package lists...
Building dependency tree...
Reading state information...
The following packages were automatically installed and are no longer required:
  linux-gcp-5.4-headers-5.4.0-1040 linux-gcp-5.4-headers-5.4.0-1043
  linux-gcp-5.4-headers-5.4.0-1044 linux-gcp-5.4-headers-5.4.0-1049
  linux-headers-5.4.0-1049-gcp linux-image-5.4.0-1049-gcp
  linux-modules-5.4.0-1049-gcp linux-modules-extra-5.4.0-1049-gcp
Use 'sudo apt autoremove' to remove them.
The following additional packages will be installed:
  freepats libaudio2 libflac8 libjack-jackd2-0 libogg0 libsamplerate0
  libvorbis0a libvorbisenc2 timidity-daemon
Suggested packages:
  nas jackd2 fluid-soundfont-gm fluid-soundfont-gs pmidi
The following NEW packages will be installed:
  freepats libaudio2 libflac8 libjack-jackd2-0 libogg0 libsamplerate0
  libsndfile1 libvorbis0a libvorbisenc2 timidity timidity-daemon
0 upgraded, 11 newly installed, 0 to remove and 143 not upgraded.
Need to get 31.4 MB of archives.
After this operation, 40.4 MB of additional disk space will be used.
Get:1 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libogg0 amd64 1.3.2-1 [17.2 kB]
Get:2 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/universe amd64 freepats all 20060219-1 [29.0 MB]
Get:3 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libaudio2 amd64 1.9.4-6 [50.3 kB]
Get:4 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libflac8 amd64 1.3.2-1 [213 kB]
Get:5 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libsamplerate0 amd64 0.1.9-1 [938 kB]
Get:6 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libjack-jackd2-0 amd64 1.9.12~dfsg-2 [263 kB]
Get:7 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libvorbis0a amd64 1.3.5-4.2 [86.4 kB]
Get:8 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/main amd64 libvorbisenc2 amd64 1.3.5-4.2 [70.7 kB]
Get:9 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic-updates/main amd64 libsndfile1 amd64 1.0.28-4ubuntu0.18.04.2 [170 kB]
Get:10 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/universe amd64 timidity amd64 2.13.2-41 [585 kB]
Get:11 http://asia-east1.gce.archive.ubuntu.com/ubuntu bionic/universe amd64 timidity-daemon all 2.13.2-41 [5984 B]
Fetched 31.4 MB in 2s (14.5 MB/s)
Selecting previously unselected package libogg0:amd64.
(Reading database ... 281949 files and directories currently installed.)
Preparing to unpack .../00-libogg0_1.3.2-1_amd64.deb ...
Unpacking libogg0:amd64 (1.3.2-1) ...
Selecting previously unselected package freepats.
Preparing to unpack .../01-freepats_20060219-1_all.deb ...
Unpacking freepats (20060219-1) ...
Selecting previously unselected package libaudio2:amd64.
Preparing to unpack .../02-libaudio2_1.9.4-6_amd64.deb ...
Unpacking libaudio2:amd64 (1.9.4-6) ...
Selecting previously unselected package libflac8:amd64.
Preparing to unpack .../03-libflac8_1.3.2-1_amd64.deb ...
Unpacking libflac8:amd64 (1.3.2-1) ...
Selecting previously unselected package libsamplerate0:amd64.
Preparing to unpack .../04-libsamplerate0_0.1.9-1_amd64.deb ...
Unpacking libsamplerate0:amd64 (0.1.9-1) ...
Selecting previously unselected package libjack-jackd2-0:amd64.
Preparing to unpack .../05-libjack-jackd2-0_1.9.12~dfsg-2_amd64.deb ...
Unpacking libjack-jackd2-0:amd64 (1.9.12~dfsg-2) ...
Selecting previously unselected package libvorbis0a:amd64.
Preparing to unpack .../06-libvorbis0a_1.3.5-4.2_amd64.deb ...
Unpacking libvorbis0a:amd64 (1.3.5-4.2) ...
Selecting previously unselected package libvorbisenc2:amd64.
Preparing to unpack .../07-libvorbisenc2_1.3.5-4.2_amd64.deb ...
Unpacking libvorbisenc2:amd64 (1.3.5-4.2) ...
Selecting previously unselected package libsndfile1:amd64.
Preparing to unpack .../08-libsndfile1_1.0.28-4ubuntu0.18.04.2_amd64.deb ...
Unpacking libsndfile1:amd64 (1.0.28-4ubuntu0.18.04.2) ...
Selecting previously unselected package timidity.
Preparing to unpack .../09-timidity_2.13.2-41_amd64.deb ...
Unpacking timidity (2.13.2-41) ...
Selecting previously unselected package timidity-daemon.
Preparing to unpack .../10-timidity-daemon_2.13.2-41_all.deb ...
Unpacking timidity-daemon (2.13.2-41) ...
Setting up libogg0:amd64 (1.3.2-1) ...
Setting up libsamplerate0:amd64 (0.1.9-1) ...
Setting up freepats (20060219-1) ...
Setting up libvorbis0a:amd64 (1.3.5-4.2) ...
Setting up libaudio2:amd64 (1.9.4-6) ...
Setting up libflac8:amd64 (1.3.2-1) ...
Setting up libjack-jackd2-0:amd64 (1.9.12~dfsg-2) ...
Setting up libvorbisenc2:amd64 (1.3.5-4.2) ...
Setting up timidity (2.13.2-41) ...
Setting up libsndfile1:amd64 (1.0.28-4ubuntu0.18.04.2) ...
Setting up timidity-daemon (2.13.2-41) ...
Adding group timidity....done
Adding system user timidity....done
Adding user `timidity' to group `audio' ...
Adding user timidity to group audio
Done.
Processing triggers for man-db (2.8.3-2ubuntu0.1) ...
Processing triggers for ureadahead (0.100.0-21) ...
Processing triggers for libc-bin (2.27-3ubuntu1.2) ...
Processing triggers for systemd (237-3ubuntu10.50) ...
# All the imports to deal with sound data
pip install pydub numba==0.48 librosa music21
import tensorflow as tf
import tensorflow_hub as hub

import numpy as np
import matplotlib.pyplot as plt
import librosa
from librosa import display as librosadisplay

import logging
import math
import statistics
import sys

from IPython.display import Audio, Javascript
from scipy.io import wavfile

from base64 import b64decode

import music21
from pydub import AudioSegment

logger = logging.getLogger()
logger.setLevel(logging.ERROR)

print("tensorflow: %s" % tf.__version__)
#print("librosa: %s" % librosa.__version__)
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/numba/errors.py:137: UserWarning: Insufficiently recent colorama version found. Numba requires colorama >= 0.3.9
  warnings.warn(msg)
tensorflow: 2.7.0
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/pydub/utils.py:170: RuntimeWarning: Couldn't find ffmpeg or avconv - defaulting to ffmpeg, but may not work
  warn("Couldn't find ffmpeg or avconv - defaulting to ffmpeg, but may not work", RuntimeWarning)

Аудио входной файл

А теперь самое сложное: запишите свое пение! :)

Мы предлагаем четыре метода получения аудиофайла:

  1. Записывайте аудио прямо в colab
  2. Загрузить со своего компьютера
  3. Использовать файл, сохраненный на Google Диске
  4. Загрузите файл из Интернета

Выберите один из четырех способов ниже.

[Запустить это] Определение кода JS для записи звука прямо из браузера

Выберите, как вводить звук

INPUT_SOURCE = 'https://storage.googleapis.com/download.tensorflow.org/data/c-scale-metronome.wav'

print('You selected', INPUT_SOURCE)

if INPUT_SOURCE == 'RECORD':
  uploaded_file_name = record(5)
elif INPUT_SOURCE == 'UPLOAD':
  try:
    from google.colab import files
  except ImportError:
    print("ImportError: files from google.colab seems to not be available")
  else:
    uploaded = files.upload()
    for fn in uploaded.keys():
      print('User uploaded file "{name}" with length {length} bytes'.format(
          name=fn, length=len(uploaded[fn])))
    uploaded_file_name = next(iter(uploaded))
    print('Uploaded file: ' + uploaded_file_name)
elif INPUT_SOURCE.startswith('./drive/'):
  try:
    from google.colab import drive
  except ImportError:
    print("ImportError: files from google.colab seems to not be available")
  else:
    drive.mount('/content/drive')
    # don't forget to change the name of the file you
    # will you here!
    gdrive_audio_file = 'YOUR_MUSIC_FILE.wav'
    uploaded_file_name = INPUT_SOURCE
elif INPUT_SOURCE.startswith('http'):
  !wget --no-check-certificate 'https://storage.googleapis.com/download.tensorflow.org/data/c-scale-metronome.wav' -O c-scale.wav
  uploaded_file_name = 'c-scale.wav'
else:
  print('Unrecognized input format!')
  print('Please select "RECORD", "UPLOAD", or specify a file hosted on Google Drive or a file from the web to download file to download')
You selected https://storage.googleapis.com/download.tensorflow.org/data/c-scale-metronome.wav
--2021-11-05 11:10:55--  https://storage.googleapis.com/download.tensorflow.org/data/c-scale-metronome.wav
Resolving storage.googleapis.com (storage.googleapis.com)... 108.177.97.128, 64.233.189.128, 74.125.203.128, ...
Connecting to storage.googleapis.com (storage.googleapis.com)|108.177.97.128|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 384728 (376K) [audio/wav]
Saving to: ‘c-scale.wav’

c-scale.wav         100%[===================>] 375.71K  --.-KB/s    in 0.006s  

2021-11-05 11:10:56 (65.4 MB/s) - ‘c-scale.wav’ saved [384728/384728]

Подготовка аудиоданных

Теперь у нас есть звук, давайте преобразуем его в ожидаемый формат и послушаем!

Модель SPICE требует на входе аудиофайл с частотой дискретизации 16 кГц и только с одним каналом (моно).

Чтобы помочь вам с этой частью, мы создали функцию ( convert_audio_for_model ) , чтобы преобразовать любой файл WAV , вы должны ожидаемый формат модели:

# Function that converts the user-created audio to the format that the model 
# expects: bitrate 16kHz and only one channel (mono).

EXPECTED_SAMPLE_RATE = 16000

def convert_audio_for_model(user_file, output_file='converted_audio_file.wav'):
  audio = AudioSegment.from_file(user_file)
  audio = audio.set_frame_rate(EXPECTED_SAMPLE_RATE).set_channels(1)
  audio.export(output_file, format="wav")
  return output_file
# Converting to the expected format for the model
# in all the input 4 input method before, the uploaded file name is at
# the variable uploaded_file_name
converted_audio_file = convert_audio_for_model(uploaded_file_name)
# Loading audio samples from the wav file:
sample_rate, audio_samples = wavfile.read(converted_audio_file, 'rb')

# Show some basic information about the audio.
duration = len(audio_samples)/sample_rate
print(f'Sample rate: {sample_rate} Hz')
print(f'Total duration: {duration:.2f}s')
print(f'Size of the input: {len(audio_samples)}')

# Let's listen to the wav file.
Audio(audio_samples, rate=sample_rate)
Sample rate: 16000 Hz
Total duration: 11.89s
Size of the input: 190316

Прежде всего, давайте посмотрим на форму волны нашего пения.

# We can visualize the audio as a waveform.
_ = plt.plot(audio_samples)

PNG

Более информативная визуализация спектрограмма , который показывает частоту представить в течение долгого времени.

Здесь мы используем логарифмическую шкалу частот, чтобы пение было более отчетливым.

MAX_ABS_INT16 = 32768.0

def plot_stft(x, sample_rate, show_black_and_white=False):
  x_stft = np.abs(librosa.stft(x, n_fft=2048))
  fig, ax = plt.subplots()
  fig.set_size_inches(20, 10)
  x_stft_db = librosa.amplitude_to_db(x_stft, ref=np.max)
  if(show_black_and_white):
    librosadisplay.specshow(data=x_stft_db, y_axis='log', 
                             sr=sample_rate, cmap='gray_r')
  else:
    librosadisplay.specshow(data=x_stft_db, y_axis='log', sr=sample_rate)

  plt.colorbar(format='%+2.0f dB')

plot_stft(audio_samples / MAX_ABS_INT16 , sample_rate=EXPECTED_SAMPLE_RATE)
plt.show()

PNG

Здесь нам нужно последнее преобразование. Аудио образцы имеют формат int16. Их необходимо нормализовать до значений с плавающей запятой от -1 до 1.

audio_samples = audio_samples / float(MAX_ABS_INT16)

Выполнение модели

Теперь это самая легкая часть, давайте загрузим модель с TensorFlow хабом, и кормить аудио к нему. SPICE даст нам два выхода: питч и неопределенность.

TensorFlow Hub представляет собой библиотеку для публикации, обнаружения и потребления повторно используемых частей машинного обучения моделей. Это упрощает использование машинного обучения для решения ваших задач.

Чтобы загрузить модель, вам просто нужен модуль Hub и URL-адрес, указывающий на модель:

# Loading the SPICE model is easy:
model = hub.load("https://tfhub.dev/google/spice/2")
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'global_step:0' shape=() dtype=int64_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'global_step:0' shape=() dtype=int64_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/conv2d/kernel:0' shape=(1, 3, 1, 64) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/conv2d/kernel:0' shape=(1, 3, 1, 64) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/gamma:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/gamma:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/beta:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/beta:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/moving_mean:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/moving_mean:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'global_step:0' shape=() dtype=int64_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'global_step:0' shape=() dtype=int64_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/conv2d/kernel:0' shape=(1, 3, 1, 64) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/conv2d/kernel:0' shape=(1, 3, 1, 64) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/gamma:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/gamma:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/beta:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/beta:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/moving_mean:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/moving_mean:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'global_step:0' shape=() dtype=int64_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'global_step:0' shape=() dtype=int64_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/conv2d/kernel:0' shape=(1, 3, 1, 64) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/conv2d/kernel:0' shape=(1, 3, 1, 64) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/gamma:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/gamma:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/beta:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/beta:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/moving_mean:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/moving_mean:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'global_step:0' shape=() dtype=int64_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'global_step:0' shape=() dtype=int64_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/conv2d/kernel:0' shape=(1, 3, 1, 64) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/conv2d/kernel:0' shape=(1, 3, 1, 64) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/gamma:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/gamma:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/beta:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/beta:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/moving_mean:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().
WARNING:tensorflow:Unable to create a python object for variable <tf.Variable 'encoder/batch_normalization/moving_mean:0' shape=(64,) dtype=float32_ref> because it is a reference variable. It may not be visible to training APIs. If this is a problem, consider rebuilding the SavedModel after running tf.compat.v1.enable_resource_variables().

Когда модель загружена, данные подготовлены, нам нужно 3 строки, чтобы получить результат:

# We now feed the audio to the SPICE tf.hub model to obtain pitch and uncertainty outputs as tensors.
model_output = model.signatures["serving_default"](tf.constant(audio_samples, tf.float32))

pitch_outputs = model_output["pitch"]
uncertainty_outputs = model_output["uncertainty"]

# 'Uncertainty' basically means the inverse of confidence.
confidence_outputs = 1.0 - uncertainty_outputs

fig, ax = plt.subplots()
fig.set_size_inches(20, 10)
plt.plot(pitch_outputs, label='pitch')
plt.plot(confidence_outputs, label='confidence')
plt.legend(loc="lower right")
plt.show()

PNG

Давайте упростим понимание результатов, удалив все оценки высоты тона с низкой достоверностью (достоверность <0,9) и построив график оставшихся.

confidence_outputs = list(confidence_outputs)
pitch_outputs = [ float(x) for x in pitch_outputs]

indices = range(len (pitch_outputs))
confident_pitch_outputs = [ (i,p)  
  for i, p, c in zip(indices, pitch_outputs, confidence_outputs) if  c >= 0.9  ]
confident_pitch_outputs_x, confident_pitch_outputs_y = zip(*confident_pitch_outputs)

fig, ax = plt.subplots()
fig.set_size_inches(20, 10)
ax.set_ylim([0, 1])
plt.scatter(confident_pitch_outputs_x, confident_pitch_outputs_y, )
plt.scatter(confident_pitch_outputs_x, confident_pitch_outputs_y, c="r")

plt.show()

PNG

Значения высоты звука, возвращаемые SPICE, находятся в диапазоне от 0 до 1. Преобразуем их в абсолютные значения высоты звука в Гц.

def output2hz(pitch_output):
  # Constants taken from https://tfhub.dev/google/spice/2
  PT_OFFSET = 25.58
  PT_SLOPE = 63.07
  FMIN = 10.0;
  BINS_PER_OCTAVE = 12.0;
  cqt_bin = pitch_output * PT_SLOPE + PT_OFFSET;
  return FMIN * 2.0 ** (1.0 * cqt_bin / BINS_PER_OCTAVE)

confident_pitch_values_hz = [ output2hz(p) for p in confident_pitch_outputs_y ]

Теперь давайте посмотрим, насколько хорош прогноз: мы наложим предсказанные высоты тона на исходную спектрограмму. Чтобы сделать предсказания высоты тона более наглядными, мы изменили спектрограмму на черно-белую.

plot_stft(audio_samples / MAX_ABS_INT16 , 
          sample_rate=EXPECTED_SAMPLE_RATE, show_black_and_white=True)
# Note: conveniently, since the plot is in log scale, the pitch outputs 
# also get converted to the log scale automatically by matplotlib.
plt.scatter(confident_pitch_outputs_x, confident_pitch_values_hz, c="r")

plt.show()

PNG

Преобразование в музыкальные ноты

Теперь, когда у нас есть значения высоты тона, давайте конвертируем их в ноты! Эта часть сложна сама по себе. Мы должны учитывать две вещи:

  1. остальные (когда нет пения)
  2. размер каждой ноты (смещения)

1: Добавление нулей к выходу, чтобы указать, что нет пения

pitch_outputs_and_rests = [
    output2hz(p) if c >= 0.9 else 0
    for i, p, c in zip(indices, pitch_outputs, confidence_outputs)
]

2: Добавление смещения нот

Когда человек поет свободно, мелодия может иметь смещение относительно абсолютных значений высоты звука, которые могут представлять ноты. Следовательно, чтобы преобразовать прогнозы в заметки, необходимо исправить это возможное смещение. Это то, что вычисляет следующий код.

A4 = 440
C0 = A4 * pow(2, -4.75)
note_names = ["C", "C#", "D", "D#", "E", "F", "F#", "G", "G#", "A", "A#", "B"]

def hz2offset(freq):
  # This measures the quantization error for a single note.
  if freq == 0:  # Rests always have zero error.
    return None
  # Quantized note.
  h = round(12 * math.log2(freq / C0))
  return 12 * math.log2(freq / C0) - h


# The ideal offset is the mean quantization error for all the notes
# (excluding rests):
offsets = [hz2offset(p) for p in pitch_outputs_and_rests if p != 0]
print("offsets: ", offsets)

ideal_offset = statistics.mean(offsets)
print("ideal offset: ", ideal_offset)
offsets:  [0.2851075707500712, 0.3700368844097355, 0.2861639241998972, 0.19609005646164235, 0.17851737247163868, 0.27334483073408933, -0.4475316266590852, -0.24651997073237908, -0.1796558047706398, -0.23060136331860548, -0.3782634107643901, -0.4725100625926686, -0.3457194541269999, -0.2436666886383776, -0.1818906877810207, -0.1348077739650435, -0.24551812662426897, -0.4454903457934165, -0.3126792745167535, -0.12241723670307181, -0.06614479972665066, -0.06702634735648871, -0.1744135098034576, -0.29365551425759406, -0.32520890458170726, -0.056438377636119696, 0.1470525135224534, 0.17167006002122775, 0.16529246704037348, 0.09569531546290477, -0.006323616641203955, -0.11799822075907684, -0.18835098459069144, -0.17934754504506145, -0.17215419157092526, -0.23695828034226452, -0.34594501002376177, -0.39380045278613807, -0.2528674895936689, -0.11009248657768467, -0.07118597401920113, -0.08042248799149121, -0.12799598588293293, -0.16227484329287023, -0.05931985421721464, 0.10667800800259641, 0.21044687793906292, 0.2931939382975841, -0.22329278631751492, -0.12365553720538003, -0.4571117360765271, -0.34864566459005175, -0.35947798653189267, -0.4313175396496476, -0.4818928106004421, 0.44220950977261, 0.45883109973128455, -0.47095522924010425, -0.3674495078498552, -0.3047186536962201, -0.31075979246441676, -0.4501382996017185, 0.3966096259778311, 0.4238116671269694, 0.4982676686471237, -0.45932030423227843, -0.4890504510576079, 0.3836871527260044, 0.4441304941600137, -0.38787359430138935, -0.24855899466817277, -0.20666386647764057, -0.23811575664822726, -0.2760223047310504, -0.3641714288169524, -0.41670903606955534, -0.41009272976462086, -0.3340427999073796, -0.26122959716860805, -0.2232610212141708, -0.19940660549943345, -0.22528914465252825, -0.2780899004513415, -0.2744434134537457, -0.25654931231085953, -0.33068201704567457, -0.4678933079416083, -0.4695135511333177, -0.1648153518015647, -0.24618840082233362, -0.48052406086269883, -0.3771743489677135, -0.32261801643912236, -0.25560347987954657, -0.24629741950576545, -0.14035005553309787, -0.16659160448853783, -0.2442749349648139, -0.236978201704666, -0.20882506652418442, -0.22637331529204374, -0.29836135937516417, -0.39081484182421633, -0.3909877680117404, -0.3650093676025108, -0.2642347521955202, -0.13023199393098395, -0.18214744283501716, -0.3020867909366345, -0.33754229827467697, -0.34391801162306024, -0.31454499496763333, -0.26713502510135356, -0.2910439501578139, -0.11686573876684037, -0.1673094354445226, -0.24345334692542053, -0.30852998240535356, -0.35647376789395935, -0.37154654069487236, -0.3600149954730796, -0.2667062802488047, -0.21902000440899627, -0.2484456507736752, -0.2774107871825038, -0.2941432754570741, -0.31118778272216474, -0.32662896348779213, -0.3053947554403962, -0.2160201109821145, -0.17343703730647775, -0.17792559965198507, -0.19880643679444177, -0.2725068260604502, -0.3152120758468442, -0.28217377586905457, -0.11595223738495974, 0.0541902144377957, 0.11488166735824024, -0.2559698195630773, 0.01930235610660702, -0.002236352401425279, 0.4468796487277231, 0.15514959977323883, 0.4207694853966899, 0.3854474319642236, 0.4373497234409598, -0.4694994504625001, -0.3662719146782649, -0.20354085369650932, -0.015043790774988963, -0.4185651697093675, -0.17896653874461066, -0.032896162706066434, -0.061098168330843805, -0.1953772325689087, -0.2545198683315988, -0.3363741032654488, -0.39191536320988973, -0.36531668408458984, -0.3489657612020167, -0.35455202891175475, -0.38925192399566555, 0.48781635300571935, -0.2820884378129733, -0.241939488189864, -0.24987341685836384, -0.3034880535179809, -0.2910712014014081, -0.2783103765422581, -0.30017802073304267, -0.23735882385318519, -0.15802705569807785, -0.1688725350672513, 0.00533368216211727, -0.2545762573057857, -0.28210347487274845, -0.29791870250051034, -0.3228369901949648, -0.3895802937323367, 0.4323827980583488, 0.17439196334535723, -0.12961039467398905, -0.2236296109730489, -0.04022635205333813, -0.4264043621594098, -0.0019025255615048309, -0.07466309859101727, -0.08665327413623203, -0.08169104440753472, -0.31617519541327965, -0.47420548422877573, 0.1502044753855003, 0.30507923857624064, 0.031032583278971515, -0.17852388186996393, -0.3371347884709195, -0.41780861421172233, -0.2023933346444835, -0.10604901297633518, -0.10771248771493447, -0.16037790997569346, -0.18698410763089868, -0.17355977250879562, -0.008242337244190878, -0.011401999431292609, -0.1876701734835322, -0.3601715640598968, 0.011681766969516616, -0.1931417836124183]
ideal offset:  -0.16889341450193418

Теперь мы можем использовать некоторые эвристики, чтобы попытаться оценить наиболее вероятную последовательность спетых нот. Вычисленное выше идеальное смещение - это один из ингредиентов, но нам также нужно знать скорость (сколько прогнозов дает, скажем, восьмое?) И смещение по времени, чтобы начать квантование. Чтобы не усложнять, мы просто попробуем разные скорости и временные сдвиги и измерим ошибку квантования, используя в конце значения, которые минимизируют эту ошибку.

def quantize_predictions(group, ideal_offset):
  # Group values are either 0, or a pitch in Hz.
  non_zero_values = [v for v in group if v != 0]
  zero_values_count = len(group) - len(non_zero_values)

  # Create a rest if 80% is silent, otherwise create a note.
  if zero_values_count > 0.8 * len(group):
    # Interpret as a rest. Count each dropped note as an error, weighted a bit
    # worse than a badly sung note (which would 'cost' 0.5).
    return 0.51 * len(non_zero_values), "Rest"
  else:
    # Interpret as note, estimating as mean of non-rest predictions.
    h = round(
        statistics.mean([
            12 * math.log2(freq / C0) - ideal_offset for freq in non_zero_values
        ]))
    octave = h // 12
    n = h % 12
    note = note_names[n] + str(octave)
    # Quantization error is the total difference from the quantized note.
    error = sum([
        abs(12 * math.log2(freq / C0) - ideal_offset - h)
        for freq in non_zero_values
    ])
    return error, note


def get_quantization_and_error(pitch_outputs_and_rests, predictions_per_eighth,
                               prediction_start_offset, ideal_offset):
  # Apply the start offset - we can just add the offset as rests.
  pitch_outputs_and_rests = [0] * prediction_start_offset + \
                            pitch_outputs_and_rests
  # Collect the predictions for each note (or rest).
  groups = [
      pitch_outputs_and_rests[i:i + predictions_per_eighth]
      for i in range(0, len(pitch_outputs_and_rests), predictions_per_eighth)
  ]

  quantization_error = 0

  notes_and_rests = []
  for group in groups:
    error, note_or_rest = quantize_predictions(group, ideal_offset)
    quantization_error += error
    notes_and_rests.append(note_or_rest)

  return quantization_error, notes_and_rests


best_error = float("inf")
best_notes_and_rests = None
best_predictions_per_note = None

for predictions_per_note in range(20, 65, 1):
  for prediction_start_offset in range(predictions_per_note):

    error, notes_and_rests = get_quantization_and_error(
        pitch_outputs_and_rests, predictions_per_note,
        prediction_start_offset, ideal_offset)

    if error < best_error:      
      best_error = error
      best_notes_and_rests = notes_and_rests
      best_predictions_per_note = predictions_per_note

# At this point, best_notes_and_rests contains the best quantization.
# Since we don't need to have rests at the beginning, let's remove these:
while best_notes_and_rests[0] == 'Rest':
  best_notes_and_rests = best_notes_and_rests[1:]
# Also remove silence at the end.
while best_notes_and_rests[-1] == 'Rest':
  best_notes_and_rests = best_notes_and_rests[:-1]

Теперь давайте запишем квантованные ноты в виде нот!

Для этого мы будем использовать две библиотеки: music21 и Open Sheet Music Display

# Creating the sheet music score.
sc = music21.stream.Score()
# Adjust the speed to match the actual singing.
bpm = 60 * 60 / best_predictions_per_note
print ('bpm: ', bpm)
a = music21.tempo.MetronomeMark(number=bpm)
sc.insert(0,a)

for snote in best_notes_and_rests:   
    d = 'half'
    if snote == 'Rest':      
      sc.append(music21.note.Rest(type=d))
    else:
      sc.append(music21.note.Note(snote, type=d))
bpm:  78.26086956521739

[Запустить это] Вспомогательная функция для использования Open Sheet Music Display (код JS) для отображения партитуры

from IPython.core.display import display, HTML, Javascript
import json, random

def showScore(score):
    xml = open(score.write('musicxml')).read()
    showMusicXML(xml)

def showMusicXML(xml):
    DIV_ID = "OSMD_div"
    display(HTML('<div id="'+DIV_ID+'">loading OpenSheetMusicDisplay</div>'))
    script = """
    var div_id = { {DIV_ID} };
    function loadOSMD() { 
        return new Promise(function(resolve, reject){
            if (window.opensheetmusicdisplay) {
                return resolve(window.opensheetmusicdisplay)
            }
            // OSMD script has a 'define' call which conflicts with requirejs
            var _define = window.define // save the define object 
            window.define = undefined // now the loaded script will ignore requirejs
            var s = document.createElement( 'script' );
            s.setAttribute( 'src', "https://cdn.jsdelivr.net/npm/opensheetmusicdisplay@0.7.6/build/opensheetmusicdisplay.min.js" );
            //s.setAttribute( 'src', "/custom/opensheetmusicdisplay.js" );
            s.onload=function(){
                window.define = _define
                resolve(opensheetmusicdisplay);
            };
            document.body.appendChild( s ); // browser will try to load the new script tag
        }) 
    }
    loadOSMD().then((OSMD)=>{
        window.openSheetMusicDisplay = new OSMD.OpenSheetMusicDisplay(div_id, {
          drawingParameters: "compacttight"
        });
        openSheetMusicDisplay
            .load({ {data} })
            .then(
              function() {
                openSheetMusicDisplay.render();
              }
            );
    })
    """.replace('{ {DIV_ID} }',DIV_ID).replace('{ {data} }',json.dumps(xml))
    display(Javascript(script))
    return
# rendering the music score
showScore(sc)
print(best_notes_and_rests)
/tmpfs/src/tf_docs_env/lib/python3.7/site-packages/music21/musicxml/m21ToXml.py:465: MusicXMLWarning: <music21.stream.Score 0x7f276c652190> is not well-formed; see isWellFormedNotation()
  category=MusicXMLWarning)
<IPython.core.display.Javascript object>
['C3', 'D3', 'E3', 'F3', 'G3', 'A3', 'B3', 'C4']

Давайте преобразуем музыкальные ноты в файл MIDI и послушаем его.

Чтобы создать этот файл, мы можем использовать поток, который мы создали ранее.

# Saving the recognized musical notes as a MIDI file
converted_audio_file_as_midi = converted_audio_file[:-4] + '.mid'
fp = sc.write('midi', fp=converted_audio_file_as_midi)
wav_from_created_midi = converted_audio_file_as_midi.replace(' ', '_') + "_midioutput.wav"
print(wav_from_created_midi)
converted_audio_file.mid_midioutput.wav

Чтобы слушать его на colab, нам нужно преобразовать его обратно в wav. Самый простой способ сделать это - использовать робость.

timidity $converted_audio_file_as_midi -Ow -o $wav_from_created_midi
Playing converted_audio_file.mid
MIDI file: converted_audio_file.mid
Format: 1  Tracks: 2  Divisions: 1024
Track name: 
Playing time: ~16 seconds
Notes cut: 0
Notes lost totally: 0

И, наконец, послушайте аудио, созданное из нот, созданных через MIDI из предсказанных высот, выведенных моделью!

Audio(wav_from_created_midi)