Introduction to the Keras Tuner

View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook

Overview

The Keras Tuner is a library that helps you pick the optimal set of hyperparameters for your TensorFlow program. The process of selecting the right set of hyperparameters for your machine learning (ML) application is called hyperparameter tuning or hypertuning.

Hyperparameters are the variables that govern the training process and the topology of an ML model. These variables remain constant over the training process and directly impact the performance of your ML program. Hyperparameters are of two types:

  1. Model hyperparameters which influence model selection such as the number and width of hidden layers
  2. Algorithm hyperparameters which influence the speed and quality of the learning algorithm such as the learning rate for Stochastic Gradient Descent (SGD) and the number of nearest neighbors for a k Nearest Neighbors (KNN) classifier

In this tutorial, you will use the Keras Tuner to perform hypertuning for an image classification application.

Setup

import tensorflow as tf
from tensorflow import keras
2024-07-13 04:28:31.186022: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:479] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered
2024-07-13 04:28:31.212189: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:10575] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered
2024-07-13 04:28:31.212229: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1442] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered

Install and import the Keras Tuner.

pip install -q -U keras-tuner
import keras_tuner as kt

Download and prepare the dataset

In this tutorial, you will use the Keras Tuner to find the best hyperparameters for a machine learning model that classifies images of clothing from the Fashion MNIST dataset.

Load the data.

(img_train, label_train), (img_test, label_test) = keras.datasets.fashion_mnist.load_data()
# Normalize pixel values between 0 and 1
img_train = img_train.astype('float32') / 255.0
img_test = img_test.astype('float32') / 255.0

Define the model

When you build a model for hypertuning, you also define the hyperparameter search space in addition to the model architecture. The model you set up for hypertuning is called a hypermodel.

You can define a hypermodel through two approaches:

  • By using a model builder function
  • By subclassing the HyperModel class of the Keras Tuner API

You can also use two pre-defined HyperModel classes - HyperXception and HyperResNet for computer vision applications.

In this tutorial, you use a model builder function to define the image classification model. The model builder function returns a compiled model and uses hyperparameters you define inline to hypertune the model.

def model_builder(hp):
  model = keras.Sequential()
  model.add(keras.layers.Flatten(input_shape=(28, 28)))

  # Tune the number of units in the first Dense layer
  # Choose an optimal value between 32-512
  hp_units = hp.Int('units', min_value=32, max_value=512, step=32)
  model.add(keras.layers.Dense(units=hp_units, activation='relu'))
  model.add(keras.layers.Dense(10))

  # Tune the learning rate for the optimizer
  # Choose an optimal value from 0.01, 0.001, or 0.0001
  hp_learning_rate = hp.Choice('learning_rate', values=[1e-2, 1e-3, 1e-4])

  model.compile(optimizer=keras.optimizers.Adam(learning_rate=hp_learning_rate),
                loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
                metrics=['accuracy'])

  return model

Instantiate the tuner and perform hypertuning

Instantiate the tuner to perform the hypertuning. The Keras Tuner has four tuners available - RandomSearch, Hyperband, BayesianOptimization, and Sklearn. In this tutorial, you use the Hyperband tuner.

To instantiate the Hyperband tuner, you must specify the hypermodel, the objective to optimize and the maximum number of epochs to train (max_epochs).

tuner = kt.Hyperband(model_builder,
                     objective='val_accuracy',
                     max_epochs=10,
                     factor=3,
                     directory='my_dir',
                     project_name='intro_to_kt')
/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/keras/src/layers/reshaping/flatten.py:37: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.
  super().__init__(**kwargs)

The Hyperband tuning algorithm uses adaptive resource allocation and early-stopping to quickly converge on a high-performing model. This is done using a sports championship style bracket. The algorithm trains a large number of models for a few epochs and carries forward only the top-performing half of models to the next round. Hyperband determines the number of models to train in a bracket by computing 1 + logfactor(max_epochs) and rounding it up to the nearest integer.

Create a callback to stop training early after reaching a certain value for the validation loss.

stop_early = tf.keras.callbacks.EarlyStopping(monitor='val_loss', patience=5)

Run the hyperparameter search. The arguments for the search method are the same as those used for tf.keras.model.fit in addition to the callback above.

tuner.search(img_train, label_train, epochs=50, validation_split=0.2, callbacks=[stop_early])

# Get the optimal hyperparameters
best_hps=tuner.get_best_hyperparameters(num_trials=1)[0]

print(f"""
The hyperparameter search is complete. The optimal number of units in the first densely-connected
layer is {best_hps.get('units')} and the optimal learning rate for the optimizer
is {best_hps.get('learning_rate')}.
""")
Trial 30 Complete [00h 00m 25s]
val_accuracy: 0.8756666779518127

Best val_accuracy So Far: 0.8918333053588867
Total elapsed time: 00h 05m 43s

The hyperparameter search is complete. The optimal number of units in the first densely-connected
layer is 416 and the optimal learning rate for the optimizer
is 0.001.

Train the model

Find the optimal number of epochs to train the model with the hyperparameters obtained from the search.

# Build the model with the optimal hyperparameters and train it on the data for 50 epochs
model = tuner.hypermodel.build(best_hps)
history = model.fit(img_train, label_train, epochs=50, validation_split=0.2)

val_acc_per_epoch = history.history['val_accuracy']
best_epoch = val_acc_per_epoch.index(max(val_acc_per_epoch)) + 1
print('Best epoch: %d' % (best_epoch,))
Epoch 1/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 4s 2ms/step - accuracy: 0.7834 - loss: 0.6144 - val_accuracy: 0.8597 - val_loss: 0.3901
Epoch 2/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.8655 - loss: 0.3748 - val_accuracy: 0.8707 - val_loss: 0.3614
Epoch 3/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.8805 - loss: 0.3306 - val_accuracy: 0.8768 - val_loss: 0.3432
Epoch 4/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.8869 - loss: 0.3040 - val_accuracy: 0.8749 - val_loss: 0.3520
Epoch 5/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.8938 - loss: 0.2865 - val_accuracy: 0.8823 - val_loss: 0.3322
Epoch 6/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.8966 - loss: 0.2744 - val_accuracy: 0.8836 - val_loss: 0.3270
Epoch 7/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9048 - loss: 0.2525 - val_accuracy: 0.8704 - val_loss: 0.3599
Epoch 8/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9060 - loss: 0.2467 - val_accuracy: 0.8904 - val_loss: 0.3158
Epoch 9/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9122 - loss: 0.2340 - val_accuracy: 0.8894 - val_loss: 0.3205
Epoch 10/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9169 - loss: 0.2218 - val_accuracy: 0.8905 - val_loss: 0.3211
Epoch 11/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9194 - loss: 0.2123 - val_accuracy: 0.8921 - val_loss: 0.3132
Epoch 12/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9241 - loss: 0.2038 - val_accuracy: 0.8876 - val_loss: 0.3280
Epoch 13/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9245 - loss: 0.2025 - val_accuracy: 0.8917 - val_loss: 0.3190
Epoch 14/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9316 - loss: 0.1865 - val_accuracy: 0.8958 - val_loss: 0.3175
Epoch 15/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9313 - loss: 0.1841 - val_accuracy: 0.8967 - val_loss: 0.3103
Epoch 16/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9345 - loss: 0.1770 - val_accuracy: 0.8913 - val_loss: 0.3378
Epoch 17/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9378 - loss: 0.1691 - val_accuracy: 0.8930 - val_loss: 0.3432
Epoch 18/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9373 - loss: 0.1640 - val_accuracy: 0.8878 - val_loss: 0.3555
Epoch 19/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9394 - loss: 0.1596 - val_accuracy: 0.8908 - val_loss: 0.3525
Epoch 20/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9427 - loss: 0.1527 - val_accuracy: 0.8913 - val_loss: 0.3433
Epoch 21/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9431 - loss: 0.1507 - val_accuracy: 0.8912 - val_loss: 0.3503
Epoch 22/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9442 - loss: 0.1472 - val_accuracy: 0.8891 - val_loss: 0.3593
Epoch 23/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9468 - loss: 0.1425 - val_accuracy: 0.8949 - val_loss: 0.3600
Epoch 24/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9501 - loss: 0.1343 - val_accuracy: 0.8923 - val_loss: 0.3566
Epoch 25/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9496 - loss: 0.1340 - val_accuracy: 0.8878 - val_loss: 0.3949
Epoch 26/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9539 - loss: 0.1262 - val_accuracy: 0.8907 - val_loss: 0.3792
Epoch 27/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9543 - loss: 0.1209 - val_accuracy: 0.8942 - val_loss: 0.3780
Epoch 28/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9529 - loss: 0.1213 - val_accuracy: 0.8953 - val_loss: 0.3919
Epoch 29/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9576 - loss: 0.1135 - val_accuracy: 0.8949 - val_loss: 0.3889
Epoch 30/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9577 - loss: 0.1130 - val_accuracy: 0.8932 - val_loss: 0.3988
Epoch 31/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9578 - loss: 0.1093 - val_accuracy: 0.8938 - val_loss: 0.4114
Epoch 32/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9579 - loss: 0.1102 - val_accuracy: 0.8950 - val_loss: 0.4106
Epoch 33/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9595 - loss: 0.1077 - val_accuracy: 0.8942 - val_loss: 0.4095
Epoch 34/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9584 - loss: 0.1085 - val_accuracy: 0.8950 - val_loss: 0.4217
Epoch 35/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9617 - loss: 0.1033 - val_accuracy: 0.8909 - val_loss: 0.4860
Epoch 36/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9635 - loss: 0.0971 - val_accuracy: 0.8944 - val_loss: 0.4451
Epoch 37/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9646 - loss: 0.0926 - val_accuracy: 0.8857 - val_loss: 0.5176
Epoch 38/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9659 - loss: 0.0909 - val_accuracy: 0.8892 - val_loss: 0.4487
Epoch 39/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9649 - loss: 0.0969 - val_accuracy: 0.8912 - val_loss: 0.4505
Epoch 40/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9645 - loss: 0.0945 - val_accuracy: 0.8950 - val_loss: 0.4620
Epoch 41/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9669 - loss: 0.0877 - val_accuracy: 0.8902 - val_loss: 0.4589
Epoch 42/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9689 - loss: 0.0817 - val_accuracy: 0.8925 - val_loss: 0.4819
Epoch 43/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9674 - loss: 0.0841 - val_accuracy: 0.8925 - val_loss: 0.4590
Epoch 44/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9708 - loss: 0.0764 - val_accuracy: 0.8966 - val_loss: 0.4496
Epoch 45/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9706 - loss: 0.0812 - val_accuracy: 0.8899 - val_loss: 0.5248
Epoch 46/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9698 - loss: 0.0817 - val_accuracy: 0.8972 - val_loss: 0.4896
Epoch 47/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9716 - loss: 0.0757 - val_accuracy: 0.8912 - val_loss: 0.5208
Epoch 48/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9712 - loss: 0.0777 - val_accuracy: 0.8955 - val_loss: 0.4960
Epoch 49/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9711 - loss: 0.0754 - val_accuracy: 0.8902 - val_loss: 0.5836
Epoch 50/50
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9738 - loss: 0.0712 - val_accuracy: 0.8942 - val_loss: 0.5111
Best epoch: 46

Re-instantiate the hypermodel and train it with the optimal number of epochs from above.

hypermodel = tuner.hypermodel.build(best_hps)

# Retrain the model
hypermodel.fit(img_train, label_train, epochs=best_epoch, validation_split=0.2)
Epoch 1/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 3s 2ms/step - accuracy: 0.7859 - loss: 0.6252 - val_accuracy: 0.8511 - val_loss: 0.4150
Epoch 2/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.8626 - loss: 0.3801 - val_accuracy: 0.8575 - val_loss: 0.3849
Epoch 3/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.8738 - loss: 0.3377 - val_accuracy: 0.8665 - val_loss: 0.3635
Epoch 4/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.8889 - loss: 0.3028 - val_accuracy: 0.8816 - val_loss: 0.3250
Epoch 5/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.8951 - loss: 0.2875 - val_accuracy: 0.8880 - val_loss: 0.3142
Epoch 6/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.8996 - loss: 0.2703 - val_accuracy: 0.8840 - val_loss: 0.3205
Epoch 7/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9039 - loss: 0.2545 - val_accuracy: 0.8768 - val_loss: 0.3439
Epoch 8/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9101 - loss: 0.2409 - val_accuracy: 0.8853 - val_loss: 0.3357
Epoch 9/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9166 - loss: 0.2261 - val_accuracy: 0.8899 - val_loss: 0.3255
Epoch 10/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9178 - loss: 0.2207 - val_accuracy: 0.8848 - val_loss: 0.3313
Epoch 11/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9206 - loss: 0.2160 - val_accuracy: 0.8901 - val_loss: 0.3188
Epoch 12/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9215 - loss: 0.2069 - val_accuracy: 0.8901 - val_loss: 0.3178
Epoch 13/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9271 - loss: 0.1945 - val_accuracy: 0.8902 - val_loss: 0.3433
Epoch 14/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9283 - loss: 0.1905 - val_accuracy: 0.8913 - val_loss: 0.3185
Epoch 15/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9310 - loss: 0.1840 - val_accuracy: 0.8965 - val_loss: 0.3224
Epoch 16/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9348 - loss: 0.1747 - val_accuracy: 0.8907 - val_loss: 0.3480
Epoch 17/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9335 - loss: 0.1739 - val_accuracy: 0.8927 - val_loss: 0.3427
Epoch 18/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9381 - loss: 0.1654 - val_accuracy: 0.8959 - val_loss: 0.3328
Epoch 19/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9411 - loss: 0.1554 - val_accuracy: 0.8956 - val_loss: 0.3311
Epoch 20/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9409 - loss: 0.1536 - val_accuracy: 0.8913 - val_loss: 0.3663
Epoch 21/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9448 - loss: 0.1483 - val_accuracy: 0.8931 - val_loss: 0.3675
Epoch 22/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9453 - loss: 0.1419 - val_accuracy: 0.8933 - val_loss: 0.3555
Epoch 23/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9477 - loss: 0.1396 - val_accuracy: 0.8903 - val_loss: 0.3795
Epoch 24/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9480 - loss: 0.1405 - val_accuracy: 0.8949 - val_loss: 0.3739
Epoch 25/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 3s 2ms/step - accuracy: 0.9490 - loss: 0.1344 - val_accuracy: 0.8935 - val_loss: 0.3846
Epoch 26/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9507 - loss: 0.1301 - val_accuracy: 0.8928 - val_loss: 0.3961
Epoch 27/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9535 - loss: 0.1218 - val_accuracy: 0.8982 - val_loss: 0.3585
Epoch 28/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9540 - loss: 0.1205 - val_accuracy: 0.8923 - val_loss: 0.3853
Epoch 29/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9548 - loss: 0.1213 - val_accuracy: 0.8934 - val_loss: 0.4092
Epoch 30/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9588 - loss: 0.1122 - val_accuracy: 0.8907 - val_loss: 0.4172
Epoch 31/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9572 - loss: 0.1136 - val_accuracy: 0.8975 - val_loss: 0.3871
Epoch 32/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9589 - loss: 0.1119 - val_accuracy: 0.8909 - val_loss: 0.4302
Epoch 33/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9609 - loss: 0.1059 - val_accuracy: 0.8941 - val_loss: 0.4405
Epoch 34/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9609 - loss: 0.1037 - val_accuracy: 0.8947 - val_loss: 0.4228
Epoch 35/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9635 - loss: 0.0993 - val_accuracy: 0.8956 - val_loss: 0.4306
Epoch 36/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9640 - loss: 0.0960 - val_accuracy: 0.8944 - val_loss: 0.4330
Epoch 37/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9618 - loss: 0.0983 - val_accuracy: 0.8962 - val_loss: 0.4432
Epoch 38/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9644 - loss: 0.0937 - val_accuracy: 0.8922 - val_loss: 0.4692
Epoch 39/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9653 - loss: 0.0926 - val_accuracy: 0.8934 - val_loss: 0.4716
Epoch 40/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9648 - loss: 0.0935 - val_accuracy: 0.8926 - val_loss: 0.4649
Epoch 41/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9663 - loss: 0.0886 - val_accuracy: 0.8912 - val_loss: 0.4818
Epoch 42/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9671 - loss: 0.0877 - val_accuracy: 0.8916 - val_loss: 0.5000
Epoch 43/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9682 - loss: 0.0830 - val_accuracy: 0.8877 - val_loss: 0.5475
Epoch 44/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 1ms/step - accuracy: 0.9674 - loss: 0.0860 - val_accuracy: 0.8955 - val_loss: 0.4778
Epoch 45/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9686 - loss: 0.0798 - val_accuracy: 0.8872 - val_loss: 0.5337
Epoch 46/46
1500/1500 ━━━━━━━━━━━━━━━━━━━━ 2s 2ms/step - accuracy: 0.9705 - loss: 0.0763 - val_accuracy: 0.8948 - val_loss: 0.4820
<keras.src.callbacks.history.History at 0x7f53840b6f10>

To finish this tutorial, evaluate the hypermodel on the test data.

eval_result = hypermodel.evaluate(img_test, label_test)
print("[test loss, test accuracy]:", eval_result)
313/313 ━━━━━━━━━━━━━━━━━━━━ 1s 2ms/step - accuracy: 0.8913 - loss: 0.5298
[test loss, test accuracy]: [0.5244643092155457, 0.8938999772071838]

The my_dir/intro_to_kt directory contains detailed logs and checkpoints for every trial (model configuration) run during the hyperparameter search. If you re-run the hyperparameter search, the Keras Tuner uses the existing state from these logs to resume the search. To disable this behavior, pass an additional overwrite=True argument while instantiating the tuner.

Summary

In this tutorial, you learned how to use the Keras Tuner to tune hyperparameters for a model. To learn more about the Keras Tuner, check out these additional resources:

Also check out the HParams Dashboard in TensorBoard to interactively tune your model hyperparameters.