TensorBoard माइग्रेट करें: TensorFlow का विज़ुअलाइज़ेशन टूलकिट

TensorFlow.org पर देखें Google Colab में चलाएं GitHub पर स्रोत देखें नोटबुक डाउनलोड करें

TensorBoard TensorFlow में माप और विज़ुअलाइज़ेशन प्रदान करने के लिए एक अंतर्निहित उपकरण है। सामान्य मशीन लर्निंग प्रयोग मेट्रिक्स, जैसे सटीकता और हानि, को ट्रैक किया जा सकता है और TensorBoard में प्रदर्शित किया जा सकता है। TensorBoard TensorFlow 1 और 2 कोड के साथ संगत है।

TensorFlow 1 में, tf.estimator.Estimator डिफ़ॉल्ट रूप से TensorBoard के लिए सारांश सहेजता है। इसकी तुलना में, TensorFlow 2 में, सारांश को tf.keras.callbacks.TensorBoard कॉलबैक का उपयोग करके सहेजा जा सकता है।

यह मार्गदर्शिका दर्शाती है कि पहले TensorFlow 1 में अनुमानक के साथ TensorBoard का उपयोग कैसे करें, और फिर, TensorFlow 2 में समान प्रक्रिया को कैसे पूरा करें।

सेट अप

import tensorflow.compat.v1 as tf1
import tensorflow as tf
import tempfile
import numpy as np
import datetime
%load_ext tensorboard
mnist = tf.keras.datasets.mnist # The MNIST dataset.

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
11493376/11490434 [==============================] - 0s 0us/step
11501568/11490434 [==============================] - 0s 0us/step

TensorFlow 1: TensorBoard tf.estimator . के साथ

इस TensorFlow 1 उदाहरण में, आप एक tf.estimator.DNNClassifier को इंस्टेंट करते हैं, MNIST डेटासेट पर इसका प्रशिक्षण और मूल्यांकन करते हैं, और मेट्रिक्स प्रदर्शित करने के लिए TensorBoard का उपयोग करते हैं:

%reload_ext tensorboard

feature_columns = [tf1.feature_column.numeric_column("x", shape=[28, 28])]

config = tf1.estimator.RunConfig(save_summary_steps=1,
                                 save_checkpoints_steps=1)

path = tempfile.mkdtemp()

classifier = tf1.estimator.DNNClassifier(
    feature_columns=feature_columns,
    hidden_units=[256, 32],
    optimizer=tf1.train.AdamOptimizer(0.001),
    n_classes=10,
    dropout=0.1,
    model_dir=path,
    config = config
)

train_input_fn = tf1.estimator.inputs.numpy_input_fn(
    x={"x": x_train},
    y=y_train.astype(np.int32),
    num_epochs=10,
    batch_size=50,
    shuffle=True,
)

test_input_fn = tf1.estimator.inputs.numpy_input_fn(
    x={"x": x_test},
    y=y_test.astype(np.int32),
    num_epochs=10,
    shuffle=False
)

train_spec = tf1.estimator.TrainSpec(input_fn=train_input_fn, max_steps=10)
eval_spec = tf1.estimator.EvalSpec(input_fn=test_input_fn,
                                   steps=10,
                                   throttle_secs=0)

tf1.estimator.train_and_evaluate(estimator=classifier,
                                train_spec=train_spec,
                                eval_spec=eval_spec)
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmp9w0s5sgg', '_tf_random_seed': None, '_save_summary_steps': 1, '_save_checkpoints_steps': 1, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true
graph_options {
  rewrite_options {
    meta_optimizer_iterations: ONE
  }
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
WARNING:tensorflow:From /tmp/ipykernel_13367/2752664473.py:20: The name tf.estimator.inputs is deprecated. Please use tf.compat.v1.estimator.inputs instead.

WARNING:tensorflow:From /tmp/ipykernel_13367/2752664473.py:20: The name tf.estimator.inputs.numpy_input_fn is deprecated. Please use tf.compat.v1.estimator.inputs.numpy_input_fn instead.

INFO:tensorflow:Not using Distribute Coordinator.
INFO:tensorflow:Running training and evaluation locally (non-distributed).
INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps 1 or save_checkpoints_secs None.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_queue_runner.py:65: QueueRunner.__init__ (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_functions.py:491: add_queue_runner (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/monitored_session.py:907: start_queue_runners (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmp9w0s5sgg/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1...
INFO:tensorflow:Saving checkpoints for 1 into /tmp/tmp9w0s5sgg/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-09-22T20:09:45
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmp9w0s5sgg/model.ckpt-1
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.25105s
INFO:tensorflow:Finished evaluation at 2021-09-22-20:09:45
INFO:tensorflow:Saving dict for global step 1: accuracy = 0.16328125, average_loss = 2.2459474, global_step = 1, loss = 287.48126
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 1: /tmp/tmp9w0s5sgg/model.ckpt-1
INFO:tensorflow:loss = 115.65201, step = 0
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 2...
INFO:tensorflow:Saving checkpoints for 2 into /tmp/tmp9w0s5sgg/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 2...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-09-22T20:09:46
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmp9w0s5sgg/model.ckpt-2
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.24542s
INFO:tensorflow:Finished evaluation at 2021-09-22-20:09:46
INFO:tensorflow:Saving dict for global step 2: accuracy = 0.25625, average_loss = 2.1821105, global_step = 2, loss = 279.31015
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 2: /tmp/tmp9w0s5sgg/model.ckpt-2
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 3...
INFO:tensorflow:Saving checkpoints for 3 into /tmp/tmp9w0s5sgg/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 3...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-09-22T20:09:46
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmp9w0s5sgg/model.ckpt-3
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.24425s
INFO:tensorflow:Finished evaluation at 2021-09-22-20:09:46
INFO:tensorflow:Saving dict for global step 3: accuracy = 0.3, average_loss = 2.1269565, global_step = 3, loss = 272.25043
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 3: /tmp/tmp9w0s5sgg/model.ckpt-3
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 4...
INFO:tensorflow:Saving checkpoints for 4 into /tmp/tmp9w0s5sgg/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 4...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-09-22T20:09:47
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmp9w0s5sgg/model.ckpt-4
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.25865s
INFO:tensorflow:Finished evaluation at 2021-09-22-20:09:47
INFO:tensorflow:Saving dict for global step 4: accuracy = 0.3484375, average_loss = 2.0719538, global_step = 4, loss = 265.21008
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 4: /tmp/tmp9w0s5sgg/model.ckpt-4
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 5...
INFO:tensorflow:Saving checkpoints for 5 into /tmp/tmp9w0s5sgg/model.ckpt.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/saver.py:971: remove_checkpoint (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to delete files with this prefix.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 5...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-09-22T20:09:47
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmp9w0s5sgg/model.ckpt-5
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.23830s
INFO:tensorflow:Finished evaluation at 2021-09-22-20:09:47
INFO:tensorflow:Saving dict for global step 5: accuracy = 0.40078124, average_loss = 2.013233, global_step = 5, loss = 257.69382
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 5: /tmp/tmp9w0s5sgg/model.ckpt-5
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 6...
INFO:tensorflow:Saving checkpoints for 6 into /tmp/tmp9w0s5sgg/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 6...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-09-22T20:09:48
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmp9w0s5sgg/model.ckpt-6
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.24491s
INFO:tensorflow:Finished evaluation at 2021-09-22-20:09:48
INFO:tensorflow:Saving dict for global step 6: accuracy = 0.45546874, average_loss = 1.9495137, global_step = 6, loss = 249.53775
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 6: /tmp/tmp9w0s5sgg/model.ckpt-6
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 7...
INFO:tensorflow:Saving checkpoints for 7 into /tmp/tmp9w0s5sgg/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 7...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-09-22T20:09:48
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmp9w0s5sgg/model.ckpt-7
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.24294s
INFO:tensorflow:Finished evaluation at 2021-09-22-20:09:49
INFO:tensorflow:Saving dict for global step 7: accuracy = 0.4984375, average_loss = 1.8863195, global_step = 7, loss = 241.4489
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 7: /tmp/tmp9w0s5sgg/model.ckpt-7
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 8...
INFO:tensorflow:Saving checkpoints for 8 into /tmp/tmp9w0s5sgg/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 8...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-09-22T20:09:49
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmp9w0s5sgg/model.ckpt-8
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.24205s
INFO:tensorflow:Finished evaluation at 2021-09-22-20:09:49
INFO:tensorflow:Saving dict for global step 8: accuracy = 0.50390625, average_loss = 1.8260235, global_step = 8, loss = 233.731
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 8: /tmp/tmp9w0s5sgg/model.ckpt-8
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 9...
INFO:tensorflow:Saving checkpoints for 9 into /tmp/tmp9w0s5sgg/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 9...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-09-22T20:09:49
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmp9w0s5sgg/model.ckpt-9
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.24289s
INFO:tensorflow:Finished evaluation at 2021-09-22-20:09:50
INFO:tensorflow:Saving dict for global step 9: accuracy = 0.5046875, average_loss = 1.770147, global_step = 9, loss = 226.57881
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 9: /tmp/tmp9w0s5sgg/model.ckpt-9
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 10...
INFO:tensorflow:Saving checkpoints for 10 into /tmp/tmp9w0s5sgg/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 10...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2021-09-22T20:09:50
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmp9w0s5sgg/model.ckpt-10
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.24503s
INFO:tensorflow:Finished evaluation at 2021-09-22-20:09:50
INFO:tensorflow:Saving dict for global step 10: accuracy = 0.50859374, average_loss = 1.7165858, global_step = 10, loss = 219.72298
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 10: /tmp/tmp9w0s5sgg/model.ckpt-10
INFO:tensorflow:Loss for final step: 82.50392.
({'accuracy': 0.50859374,
  'average_loss': 1.7165858,
  'loss': 219.72298,
  'global_step': 10},
 [])
%tensorboard --logdir {classifier.model_dir}

TensorFlow 2: TensorBoard एक Keras कॉलबैक और Model.fit के साथ

इस TensorFlow 2 उदाहरण में, आप tf.keras.callbacks.TensorBoard कॉलबैक के साथ लॉग बनाते और संग्रहीत करते हैं, और मॉडल को प्रशिक्षित करते हैं। कॉलबैक प्रति युग सटीकता और हानि को ट्रैक करता है। इसे callbacks सूची में Model.fit को पास कर दिया जाता है।

%reload_ext tensorboard

def create_model():
  return tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(512, activation='relu'),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(10, activation='softmax')
  ])

model = create_model()
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'],
              steps_per_execution=10)

log_dir = tempfile.mkdtemp()
tensorboard_callback = tf.keras.callbacks.TensorBoard(
  log_dir=log_dir,
  histogram_freq=1) # Enable histogram computation with each epoch.

model.fit(x=x_train,
          y=y_train,
          epochs=10,
          validation_data=(x_test, y_test),
          callbacks=[tensorboard_callback])
Epoch 1/10
1875/1875 [==============================] - 4s 2ms/step - loss: 0.2205 - accuracy: 0.9351 - val_loss: 0.1078 - val_accuracy: 0.9675
Epoch 2/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.0958 - accuracy: 0.9711 - val_loss: 0.0852 - val_accuracy: 0.9716
Epoch 3/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.0685 - accuracy: 0.9786 - val_loss: 0.0728 - val_accuracy: 0.9772
Epoch 4/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.0525 - accuracy: 0.9834 - val_loss: 0.0694 - val_accuracy: 0.9786
Epoch 5/10
1875/1875 [==============================] - 3s 1ms/step - loss: 0.0429 - accuracy: 0.9860 - val_loss: 0.0705 - val_accuracy: 0.9784
Epoch 6/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.0369 - accuracy: 0.9876 - val_loss: 0.0616 - val_accuracy: 0.9822
Epoch 7/10
1875/1875 [==============================] - 3s 1ms/step - loss: 0.0316 - accuracy: 0.9897 - val_loss: 0.0777 - val_accuracy: 0.9787
Epoch 8/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.0267 - accuracy: 0.9910 - val_loss: 0.0709 - val_accuracy: 0.9806
Epoch 9/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.0239 - accuracy: 0.9918 - val_loss: 0.0651 - val_accuracy: 0.9835
Epoch 10/10
1875/1875 [==============================] - 3s 2ms/step - loss: 0.0225 - accuracy: 0.9920 - val_loss: 0.0713 - val_accuracy: 0.9819
<keras.callbacks.History at 0x7f3b2c590310>
%tensorboard --logdir {tensorboard_callback.log_dir}

अगले कदम