TensorFlow.org पर देखें | Google Colab में चलाएं | GitHub पर स्रोत देखें | नोटबुक डाउनलोड करें |
"सर्वश्रेष्ठ" मॉडल या मॉडल वज़न/पैरामीटर को लगातार सहेजने से कई लाभ होते हैं। इनमें प्रशिक्षण प्रगति को ट्रैक करने और विभिन्न सहेजे गए राज्यों से सहेजे गए मॉडल लोड करने में सक्षम होना शामिल है।
TensorFlow 1 में, tf.estimator.Estimator API के साथ प्रशिक्षण/सत्यापन के दौरान चेकपॉइंट बचत को कॉन्फ़िगर करने के लिए, आप tf.estimator.RunConfig में एक शेड्यूल निर्दिष्ट करते हैं या tf.estimator.RunConfig का उपयोग tf.estimator.CheckpointSaverHook । यह मार्गदर्शिका दर्शाती है कि इस वर्कफ़्लो से TensorFlow 2 Keras API में कैसे माइग्रेट किया जाए।
TensorFlow 2 में, आप tf.keras.callbacks.ModelCheckpoint को कई तरीकों से कॉन्फ़िगर कर सकते हैं:
-
save_best_only=Trueपैरामीटर का उपयोग करके मॉनिटर किए गए मीट्रिक के अनुसार "सर्वश्रेष्ठ" संस्करण सहेजें, जहांmonitorहो सकता है, उदाहरण के लिए,'loss','val_loss','accuracy', or'val_accuracy'`। - एक निश्चित आवृत्ति पर लगातार बचत करें (
save_freqतर्क का उपयोग करके)। -
save_weights_onlyकोTrueपर सेट करके पूरे मॉडल के बजाय केवल वज़न/पैरामीटर सहेजें।
अधिक विवरण के लिए, tf.keras.callbacks.ModelCheckpoint API डॉक्स और सेव चेकपॉइंट्स को सेव एंड लोड मॉडल ट्यूटोरियल में ट्रेनिंग सेक्शन के दौरान देखें। केरस मॉडल गाइड सहेजें और लोड करें में टीएफ चेकपॉइंट प्रारूप अनुभाग में चेकपॉइंट प्रारूप के बारे में और जानें। इसके अलावा, गलती सहनशीलता जोड़ने के लिए, आप मैन्युअल चेकपॉइंटिंग के लिए tf.keras.callbacks.BackupAndRestore या tf.train.Checkpoint का उपयोग कर सकते हैं। फॉल्ट टॉलरेंस माइग्रेशन गाइड में और जानें।
केरस कॉलबैक ऐसी वस्तुएं हैं जिन्हें प्रशिक्षण/मूल्यांकन/भविष्यवाणी के दौरान विभिन्न बिंदुओं पर बिल्ट-इन Model.fit / Model.evaluate / Model.predict एपीआई में बुलाया जाता है। मार्गदर्शिका के अंत में अगले चरण अनुभाग में और जानें।
सेट अप
प्रदर्शन उद्देश्यों के लिए आयात और एक साधारण डेटासेट से शुरू करें:
import tensorflow.compat.v1 as tf1
import tensorflow as tf
import numpy as np
import tempfile
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz 11493376/11490434 [==============================] - 0s 0us/step 11501568/11490434 [==============================] - 0s 0us/step
TensorFlow 1: tf.estimator API के साथ चौकियों को बचाएं
यह TensorFlow 1 उदाहरण दिखाता है कि tf.estimator.RunConfig को tf.estimator.Estimator API के साथ प्रशिक्षण/मूल्यांकन के दौरान हर कदम पर चौकियों को बचाने के लिए कैसे कॉन्फ़िगर किया जाए:
feature_columns = [tf1.feature_column.numeric_column("x", shape=[28, 28])]
config = tf1.estimator.RunConfig(save_summary_steps=1,
save_checkpoints_steps=1)
path = tempfile.mkdtemp()
classifier = tf1.estimator.DNNClassifier(
feature_columns=feature_columns,
hidden_units=[256, 32],
optimizer=tf1.train.AdamOptimizer(0.001),
n_classes=10,
dropout=0.2,
model_dir=path,
config = config
)
train_input_fn = tf1.estimator.inputs.numpy_input_fn(
x={"x": x_train},
y=y_train.astype(np.int32),
num_epochs=10,
batch_size=50,
shuffle=True,
)
test_input_fn = tf1.estimator.inputs.numpy_input_fn(
x={"x": x_test},
y=y_test.astype(np.int32),
num_epochs=10,
shuffle=False
)
train_spec = tf1.estimator.TrainSpec(input_fn=train_input_fn, max_steps=10)
eval_spec = tf1.estimator.EvalSpec(input_fn=test_input_fn,
steps=10,
throttle_secs=0)
tf1.estimator.train_and_evaluate(estimator=classifier,
train_spec=train_spec,
eval_spec=eval_spec)
INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmplrkjo9in', '_tf_random_seed': None, '_save_summary_steps': 1, '_save_checkpoints_steps': 1, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true
graph_options {
rewrite_options {
meta_optimizer_iterations: ONE
}
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
WARNING:tensorflow:From /tmp/ipykernel_20296/3980459272.py:18: The name tf.estimator.inputs is deprecated. Please use tf.compat.v1.estimator.inputs instead.
WARNING:tensorflow:From /tmp/ipykernel_20296/3980459272.py:18: The name tf.estimator.inputs.numpy_input_fn is deprecated. Please use tf.compat.v1.estimator.inputs.numpy_input_fn instead.
INFO:tensorflow:Not using Distribute Coordinator.
INFO:tensorflow:Running training and evaluation locally (non-distributed).
INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps 1 or save_checkpoints_secs None.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:397: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_queue_runner.py:65: QueueRunner.__init__ (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_functions.py:491: add_queue_runner (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Create CheckpointSaverHook.
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/monitored_session.py:914: start_queue_runners (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version.
Instructions for updating:
To construct input pipelines, use the `tf.data` module.
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0...
INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmplrkjo9in/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0...
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1...
INFO:tensorflow:Saving checkpoints for 1 into /tmp/tmplrkjo9in/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:47
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-1
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.26374s
INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:47
INFO:tensorflow:Saving dict for global step 1: accuracy = 0.1765625, average_loss = 2.2546134, global_step = 1, loss = 288.5905
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 1: /tmp/tmplrkjo9in/model.ckpt-1
INFO:tensorflow:loss = 118.3231, step = 0
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 2...
INFO:tensorflow:Saving checkpoints for 2 into /tmp/tmplrkjo9in/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 2...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:48
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-2
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.36662s
INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:48
INFO:tensorflow:Saving dict for global step 2: accuracy = 0.2859375, average_loss = 2.1868849, global_step = 2, loss = 279.92126
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 2: /tmp/tmplrkjo9in/model.ckpt-2
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 3...
INFO:tensorflow:Saving checkpoints for 3 into /tmp/tmplrkjo9in/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 3...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:48
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-3
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.22792s
INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:48
INFO:tensorflow:Saving dict for global step 3: accuracy = 0.35078126, average_loss = 2.1220195, global_step = 3, loss = 271.6185
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 3: /tmp/tmplrkjo9in/model.ckpt-3
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 4...
INFO:tensorflow:Saving checkpoints for 4 into /tmp/tmplrkjo9in/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 4...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:49
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-4
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.22387s
INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:49
INFO:tensorflow:Saving dict for global step 4: accuracy = 0.40234375, average_loss = 2.0655982, global_step = 4, loss = 264.39658
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 4: /tmp/tmplrkjo9in/model.ckpt-4
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 5...
INFO:tensorflow:Saving checkpoints for 5 into /tmp/tmplrkjo9in/model.ckpt.
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/saver.py:1054: remove_checkpoint (from tensorflow.python.training.checkpoint_management) is deprecated and will be removed in a future version.
Instructions for updating:
Use standard file APIs to delete files with this prefix.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 5...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:49
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-5
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.22548s
INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:49
INFO:tensorflow:Saving dict for global step 5: accuracy = 0.42421874, average_loss = 2.0072064, global_step = 5, loss = 256.92242
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 5: /tmp/tmplrkjo9in/model.ckpt-5
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 6...
INFO:tensorflow:Saving checkpoints for 6 into /tmp/tmplrkjo9in/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 6...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:50
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-6
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.22806s
INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:50
INFO:tensorflow:Saving dict for global step 6: accuracy = 0.43984374, average_loss = 1.9473753, global_step = 6, loss = 249.26404
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 6: /tmp/tmplrkjo9in/model.ckpt-6
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 7...
INFO:tensorflow:Saving checkpoints for 7 into /tmp/tmplrkjo9in/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 7...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:50
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-7
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.23091s
INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:50
INFO:tensorflow:Saving dict for global step 7: accuracy = 0.44296876, average_loss = 1.8903366, global_step = 7, loss = 241.96309
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 7: /tmp/tmplrkjo9in/model.ckpt-7
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 8...
INFO:tensorflow:Saving checkpoints for 8 into /tmp/tmplrkjo9in/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 8...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:51
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-8
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.22453s
INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:51
INFO:tensorflow:Saving dict for global step 8: accuracy = 0.44453126, average_loss = 1.8294731, global_step = 8, loss = 234.17256
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 8: /tmp/tmplrkjo9in/model.ckpt-8
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 9...
INFO:tensorflow:Saving checkpoints for 9 into /tmp/tmplrkjo9in/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 9...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:51
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-9
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.22271s
INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:51
INFO:tensorflow:Saving dict for global step 9: accuracy = 0.47734374, average_loss = 1.7674354, global_step = 9, loss = 226.23174
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 9: /tmp/tmplrkjo9in/model.ckpt-9
INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 10...
INFO:tensorflow:Saving checkpoints for 10 into /tmp/tmplrkjo9in/model.ckpt.
INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 10...
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-01-14T02:28:52
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmplrkjo9in/model.ckpt-10
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Evaluation [1/10]
INFO:tensorflow:Evaluation [2/10]
INFO:tensorflow:Evaluation [3/10]
INFO:tensorflow:Evaluation [4/10]
INFO:tensorflow:Evaluation [5/10]
INFO:tensorflow:Evaluation [6/10]
INFO:tensorflow:Evaluation [7/10]
INFO:tensorflow:Evaluation [8/10]
INFO:tensorflow:Evaluation [9/10]
INFO:tensorflow:Evaluation [10/10]
INFO:tensorflow:Inference Time : 0.38483s
INFO:tensorflow:Finished evaluation at 2022-01-14-02:28:52
INFO:tensorflow:Saving dict for global step 10: accuracy = 0.5140625, average_loss = 1.7108486, global_step = 10, loss = 218.98862
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 10: /tmp/tmplrkjo9in/model.ckpt-10
INFO:tensorflow:Loss for final step: 96.2236.
({'accuracy': 0.5140625,
'average_loss': 1.7108486,
'loss': 218.98862,
'global_step': 10},
[])
%ls {classifier.model_dir}
checkpoint eval/ events.out.tfevents.1642127326.kokoro-gcp-ubuntu-prod-837339153 graph.pbtxt model.ckpt-10.data-00000-of-00001 model.ckpt-10.index model.ckpt-10.meta model.ckpt-6.data-00000-of-00001 model.ckpt-6.index model.ckpt-6.meta model.ckpt-7.data-00000-of-00001 model.ckpt-7.index model.ckpt-7.meta model.ckpt-8.data-00000-of-00001 model.ckpt-8.index model.ckpt-8.meta model.ckpt-9.data-00000-of-00001 model.ckpt-9.index model.ckpt-9.meta
TensorFlow 2: Model.fit के लिए केरस कॉलबैक के साथ चौकियों को सहेजें
TensorFlow 2 में, जब आप प्रशिक्षण/मूल्यांकन के लिए बिल्ट-इन Model.fit (या Model.evaluate ) का उपयोग करते हैं, तो आप tf.keras.callbacks.ModelCheckpoint को कॉन्फ़िगर कर सकते हैं और फिर इसे Model.fit के callbacks पैरामीटर में पास कर सकते हैं (या Model.evaluate । मूल्यांकन)। ( अंतर्निहित विधियों गाइड के साथ प्रशिक्षण और मूल्यांकन में एपीआई डॉक्स और कॉलबैक का उपयोग करना अनुभाग में और जानें।)
नीचे दिए गए उदाहरण में, आप अस्थायी निर्देशिका में चौकियों को संग्रहीत करने के लिए tf.keras.callbacks.ModelCheckpoint कॉलबैक का उपयोग करेंगे:
def create_model():
return tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model = create_model()
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'],
steps_per_execution=10)
log_dir = tempfile.mkdtemp()
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=log_dir)
model.fit(x=x_train,
y=y_train,
epochs=10,
validation_data=(x_test, y_test),
callbacks=[model_checkpoint_callback])
Epoch 1/10 1840/1875 [============================>.] - ETA: 0s - loss: 0.2224 - accuracy: 0.9348 2022-01-14 02:28:56.714889: W tensorflow/python/util/util.cc:368] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 4s 2ms/step - loss: 0.2208 - accuracy: 0.9354 - val_loss: 0.1132 - val_accuracy: 0.9669 Epoch 2/10 1870/1875 [============================>.] - ETA: 0s - loss: 0.0961 - accuracy: 0.9706INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 3s 1ms/step - loss: 0.0962 - accuracy: 0.9706 - val_loss: 0.0784 - val_accuracy: 0.9753 Epoch 3/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0696 - accuracy: 0.9781INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0695 - accuracy: 0.9782 - val_loss: 0.0684 - val_accuracy: 0.9788 Epoch 4/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0529 - accuracy: 0.9826INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 3s 1ms/step - loss: 0.0531 - accuracy: 0.9826 - val_loss: 0.0671 - val_accuracy: 0.9791 Epoch 5/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0423 - accuracy: 0.9860INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 3s 1ms/step - loss: 0.0424 - accuracy: 0.9860 - val_loss: 0.0772 - val_accuracy: 0.9757 Epoch 6/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0345 - accuracy: 0.9888INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 3s 1ms/step - loss: 0.0345 - accuracy: 0.9888 - val_loss: 0.0669 - val_accuracy: 0.9811 Epoch 7/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0314 - accuracy: 0.9895INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 3s 1ms/step - loss: 0.0313 - accuracy: 0.9895 - val_loss: 0.0718 - val_accuracy: 0.9800 Epoch 8/10 1870/1875 [============================>.] - ETA: 0s - loss: 0.0298 - accuracy: 0.9899INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 3s 1ms/step - loss: 0.0298 - accuracy: 0.9899 - val_loss: 0.0632 - val_accuracy: 0.9825 Epoch 9/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0230 - accuracy: 0.9925INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 3s 1ms/step - loss: 0.0231 - accuracy: 0.9924 - val_loss: 0.0748 - val_accuracy: 0.9800 Epoch 10/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0220 - accuracy: 0.9920INFO:tensorflow:Assets written to: /tmp/tmpb85suru4/assets 1875/1875 [==============================] - 3s 1ms/step - loss: 0.0222 - accuracy: 0.9920 - val_loss: 0.0703 - val_accuracy: 0.9825 <keras.callbacks.History at 0x7f638c204410>
%ls {model_checkpoint_callback.filepath}
assets/ keras_metadata.pb saved_model.pb variables/
अगले कदम
चेकपॉइंटिंग के बारे में और जानें:
- एपीआई डॉक्स:
tf.keras.callbacks.ModelCheckpoint - ट्यूटोरियल: मॉडल सहेजें और लोड करें ( प्रशिक्षण अनुभाग के दौरान चौकियों को सहेजें )
- गाइड: केरस मॉडल सहेजें और लोड करें ( टीएफ चेकपॉइंट प्रारूप अनुभाग)
इसमें कॉलबैक के बारे में और जानें:
- एपीआई डॉक्स:
tf.keras.callbacks.Callback - गाइड: अपना खुद का कॉलबैक लिखना
- गाइड: अंतर्निहित विधियों के साथ प्रशिक्षण और मूल्यांकन ( कॉलबैक का उपयोग करना अनुभाग)
आपको निम्न माइग्रेशन-संबंधी संसाधन भी उपयोगी लग सकते हैं:
- फॉल्ट टॉलरेंस माइग्रेशन गाइड :
tf.keras.callbacks.BackupAndRestoreforModel.fit, याtf.train.Checkpointऔरtf.train.CheckpointManagerAPIs एक कस्टम ट्रेनिंग लूप के लिए - अर्ली स्टॉपिंग माइग्रेशन गाइड :
tf.keras.callbacks.EarlyStoppingएक बिल्ट-इन अर्ली स्टॉपिंग कॉलबैक है। - TensorBoard माइग्रेशन गाइड : TensorBoard मेट्रिक्स को ट्रैक करने और प्रदर्शित करने में सक्षम बनाता है
- लॉगिंग टेंसरहुक और स्टॉपएटस्टेपहुक से केरस कॉलबैक माइग्रेशन गाइड
- केरस कॉलबैक गाइड के लिए सत्ररनहुक
TensorFlow.org पर देखें
Google Colab में चलाएं
GitHub पर स्रोत देखें
नोटबुक डाउनलोड करें