Посмотреть на TensorFlow.org | Запускаем в Google Colab | Посмотреть на GitHub | Скачать блокнот | Посмотреть модели TF Hub |
Этот ноутбук демонстрационный для моделей BigBiGAN доступных на TF Hub .
BigBiGAN расширяет стандартный (большой) Gans, добавив модуль датчика , который может быть использован для неконтролируемого обучения представления. Грубо говоря, кодер инвертирует генератор путем прогнозирования latents z
дала реальные данные x
. Смотрите статью BigBiGAN на Arxiv [1] для получения дополнительной информации об этих моделях.
После подключения к среде выполнения начните работу, следуя этим инструкциям:
- (Необязательно) Обновление выбранного
module_path
в первой ячейке коды ниже , чтобы загрузить генератор BigBiGAN для другой архитектуры кодера. - Нажмите Время воспроизведения> Выполнить все , чтобы запустить каждую ячейку в порядке. После этого результаты, включая визуализации сэмплов и реконструкций BigBiGAN, должны автоматически появиться ниже.
[1] Джефф Донахью и Карен Симонян. Крупномасштабное Состязательность Представление обучения . Arxiv: 1907,02544, 2019.
Сначала установите путь к модулю. По умолчанию, мы загружаем модель BigBiGAN с меньшим RESNET-50 на основе кодера из <a href="https://tfhub.dev/deepmind/bigbigan-resnet50/1">https://tfhub.dev/deepmind/bigbigan-resnet50/1</a>
. Для того, чтобы загрузить больше RevNet-50-x4 модели на основе используется для достижения наилучших результатов обучения представления закомментируйте активное module_path
установки и раскомментируйте другой.
module_path = 'https://tfhub.dev/deepmind/bigbigan-resnet50/1' # ResNet-50
# module_path = 'https://tfhub.dev/deepmind/bigbigan-revnet50x4/1' # RevNet-50 x4
Настраивать
import io
import IPython.display
import PIL.Image
from pprint import pformat
import numpy as np
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
import tensorflow_hub as hub
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/compat/v2_compat.py:111: disable_resource_variables (from tensorflow.python.ops.variable_scope) is deprecated and will be removed in a future version. Instructions for updating: non-resource variables are not supported in the long term
Определите некоторые функции для отображения изображений
def imgrid(imarray, cols=4, pad=1, padval=255, row_major=True):
"""Lays out a [N, H, W, C] image array as a single image grid."""
pad = int(pad)
if pad < 0:
raise ValueError('pad must be non-negative')
cols = int(cols)
assert cols >= 1
N, H, W, C = imarray.shape
rows = N // cols + int(N % cols != 0)
batch_pad = rows * cols - N
assert batch_pad >= 0
post_pad = [batch_pad, pad, pad, 0]
pad_arg = [[0, p] for p in post_pad]
imarray = np.pad(imarray, pad_arg, 'constant', constant_values=padval)
H += pad
W += pad
grid = (imarray
.reshape(rows, cols, H, W, C)
.transpose(0, 2, 1, 3, 4)
.reshape(rows*H, cols*W, C))
if pad:
grid = grid[:-pad, :-pad]
return grid
def interleave(*args):
"""Interleaves input arrays of the same shape along the batch axis."""
if not args:
raise ValueError('At least one argument is required.')
a0 = args[0]
if any(a.shape != a0.shape for a in args):
raise ValueError('All inputs must have the same shape.')
if not a0.shape:
raise ValueError('Inputs must have at least one axis.')
out = np.transpose(args, [1, 0] + list(range(2, len(a0.shape) + 1)))
out = out.reshape(-1, *a0.shape[1:])
return out
def imshow(a, format='png', jpeg_fallback=True):
"""Displays an image in the given format."""
a = a.astype(np.uint8)
data = io.BytesIO()
PIL.Image.fromarray(a).save(data, format)
im_data = data.getvalue()
try:
disp = IPython.display.display(IPython.display.Image(im_data))
except IOError:
if jpeg_fallback and format != 'jpeg':
print ('Warning: image was too large to display in format "{}"; '
'trying jpeg instead.').format(format)
return imshow(a, format='jpeg')
else:
raise
return disp
def image_to_uint8(x):
"""Converts [-1, 1] float array to [0, 255] uint8."""
x = np.asarray(x)
x = (256. / 2.) * (x + 1.)
x = np.clip(x, 0, 255)
x = x.astype(np.uint8)
return x
Загрузите модуль BigBiGAN TF Hub и отобразите его доступные функции
# module = hub.Module(module_path, trainable=True, tags={'train'}) # training
module = hub.Module(module_path) # inference
for signature in module.get_signature_names():
print('Signature:', signature)
print('Inputs:', pformat(module.get_input_info_dict(signature)))
print('Outputs:', pformat(module.get_output_info_dict(signature)))
print()
Signature: default Inputs: {'x': <hub.ParsedTensorInfo shape=(?, 256, 256, 3) dtype=float32 is_sparse=False>} Outputs: {'default': <hub.ParsedTensorInfo shape=(?, 120) dtype=float32 is_sparse=False>} Signature: generate Inputs: {'z': <hub.ParsedTensorInfo shape=(?, 120) dtype=float32 is_sparse=False>} Outputs: {'default': <hub.ParsedTensorInfo shape=(?, 128, 128, 3) dtype=float32 is_sparse=False>, 'upsampled': <hub.ParsedTensorInfo shape=(?, 256, 256, 3) dtype=float32 is_sparse=False>} Signature: discriminate Inputs: {'x': <hub.ParsedTensorInfo shape=(?, 128, 128, 3) dtype=float32 is_sparse=False>, 'z': <hub.ParsedTensorInfo shape=(?, 120) dtype=float32 is_sparse=False>} Outputs: {'score_x': <hub.ParsedTensorInfo shape=(?,) dtype=float32 is_sparse=False>, 'score_xz': <hub.ParsedTensorInfo shape=(?,) dtype=float32 is_sparse=False>, 'score_z': <hub.ParsedTensorInfo shape=(?,) dtype=float32 is_sparse=False>} Signature: encode Inputs: {'x': <hub.ParsedTensorInfo shape=(?, 256, 256, 3) dtype=float32 is_sparse=False>} Outputs: {'avepool_feat': <hub.ParsedTensorInfo shape=(?, 2048) dtype=float32 is_sparse=False>, 'bn_crelu_feat': <hub.ParsedTensorInfo shape=(?, 4096) dtype=float32 is_sparse=False>, 'default': <hub.ParsedTensorInfo shape=(?, 120) dtype=float32 is_sparse=False>, 'z_mean': <hub.ParsedTensorInfo shape=(?, 120) dtype=float32 is_sparse=False>, 'z_sample': <hub.ParsedTensorInfo shape=(?, 120) dtype=float32 is_sparse=False>, 'z_stdev': <hub.ParsedTensorInfo shape=(?, 120) dtype=float32 is_sparse=False>}
Определите класс-оболочку для удобного доступа к различным функциям
class BigBiGAN(object):
def __init__(self, module):
"""Initialize a BigBiGAN from the given TF Hub module."""
self._module = module
def generate(self, z, upsample=False):
"""Run a batch of latents z through the generator to generate images.
Args:
z: A batch of 120D Gaussian latents, shape [N, 120].
Returns: a batch of generated RGB images, shape [N, 128, 128, 3], range
[-1, 1].
"""
outputs = self._module(z, signature='generate', as_dict=True)
return outputs['upsampled' if upsample else 'default']
def make_generator_ph(self):
"""Creates a tf.placeholder with the dtype & shape of generator inputs."""
info = self._module.get_input_info_dict('generate')['z']
return tf.placeholder(dtype=info.dtype, shape=info.get_shape())
def gen_pairs_for_disc(self, z):
"""Compute generator input pairs (G(z), z) for discriminator, given z.
Args:
z: A batch of latents (120D standard Gaussians), shape [N, 120].
Returns: a tuple (G(z), z) of discriminator inputs.
"""
# Downsample 256x256 image x for 128x128 discriminator input.
x = self.generate(z)
return x, z
def encode(self, x, return_all_features=False):
"""Run a batch of images x through the encoder.
Args:
x: A batch of data (256x256 RGB images), shape [N, 256, 256, 3], range
[-1, 1].
return_all_features: If True, return all features computed by the encoder.
Otherwise (default) just return a sample z_hat.
Returns: the sample z_hat of shape [N, 120] (or a dict of all features if
return_all_features).
"""
outputs = self._module(x, signature='encode', as_dict=True)
return outputs if return_all_features else outputs['z_sample']
def make_encoder_ph(self):
"""Creates a tf.placeholder with the dtype & shape of encoder inputs."""
info = self._module.get_input_info_dict('encode')['x']
return tf.placeholder(dtype=info.dtype, shape=info.get_shape())
def enc_pairs_for_disc(self, x):
"""Compute encoder input pairs (x, E(x)) for discriminator, given x.
Args:
x: A batch of data (256x256 RGB images), shape [N, 256, 256, 3], range
[-1, 1].
Returns: a tuple (downsample(x), E(x)) of discriminator inputs.
"""
# Downsample 256x256 image x for 128x128 discriminator input.
x_down = tf.nn.avg_pool(x, ksize=2, strides=2, padding='SAME')
z = self.encode(x)
return x_down, z
def discriminate(self, x, z):
"""Compute the discriminator scores for pairs of data (x, z).
(x, z) must be batches with the same leading batch dimension, and joint
scores are computed on corresponding pairs x[i] and z[i].
Args:
x: A batch of data (128x128 RGB images), shape [N, 128, 128, 3], range
[-1, 1].
z: A batch of latents (120D standard Gaussians), shape [N, 120].
Returns:
A dict of scores:
score_xz: the joint scores for the (x, z) pairs.
score_x: the unary scores for x only.
score_z: the unary scores for z only.
"""
inputs = dict(x=x, z=z)
return self._module(inputs, signature='discriminate', as_dict=True)
def reconstruct_x(self, x, use_sample=True, upsample=False):
"""Compute BigBiGAN reconstructions of images x via G(E(x)).
Args:
x: A batch of data (256x256 RGB images), shape [N, 256, 256, 3], range
[-1, 1].
use_sample: takes a sample z_hat ~ E(x). Otherwise, deterministically
use the mean. (Though a sample z_hat may be far from the mean z,
typically the resulting recons G(z_hat) and G(z) are very
similar.
upsample: if set, upsample the reconstruction to the input resolution
(256x256). Otherwise return the raw lower resolution generator output
(128x128).
Returns: a batch of recons G(E(x)), shape [N, 256, 256, 3] if
`upsample`, otherwise [N, 128, 128, 3].
"""
if use_sample:
z = self.encode(x)
else:
z = self.encode(x, return_all_features=True)['z_mean']
recons = self.generate(z, upsample=upsample)
return recons
def losses(self, x, z):
"""Compute per-module BigBiGAN losses given data & latent sample batches.
Args:
x: A batch of data (256x256 RGB images), shape [N, 256, 256, 3], range
[-1, 1].
z: A batch of latents (120D standard Gaussians), shape [M, 120].
For the original BigBiGAN losses, pass batches of size N=M=2048, with z's
sampled from a 120D standard Gaussian (e.g., np.random.randn(2048, 120)),
and x's sampled from the ImageNet (ILSVRC2012) training set with the
"ResNet-style" preprocessing from:
https://github.com/tensorflow/tpu/blob/master/models/official/resnet/resnet_preprocessing.py
Returns:
A dict of per-module losses:
disc: loss for the discriminator.
enc: loss for the encoder.
gen: loss for the generator.
"""
# Compute discriminator scores on (x, E(x)) pairs.
# Downsample 256x256 image x for 128x128 discriminator input.
scores_enc_x_dict = self.discriminate(*self.enc_pairs_for_disc(x))
scores_enc_x = tf.concat([scores_enc_x_dict['score_xz'],
scores_enc_x_dict['score_x'],
scores_enc_x_dict['score_z']], axis=0)
# Compute discriminator scores on (G(z), z) pairs.
scores_gen_z_dict = self.discriminate(*self.gen_pairs_for_disc(z))
scores_gen_z = tf.concat([scores_gen_z_dict['score_xz'],
scores_gen_z_dict['score_x'],
scores_gen_z_dict['score_z']], axis=0)
disc_loss_enc_x = tf.reduce_mean(tf.nn.relu(1. - scores_enc_x))
disc_loss_gen_z = tf.reduce_mean(tf.nn.relu(1. + scores_gen_z))
disc_loss = disc_loss_enc_x + disc_loss_gen_z
enc_loss = tf.reduce_mean(scores_enc_x)
gen_loss = tf.reduce_mean(-scores_gen_z)
return dict(disc=disc_loss, enc=enc_loss, gen=gen_loss)
Создавайте тензоры, которые будут использоваться позже для вычисления выборок, реконструкций, оценок дискриминатора и потерь.
bigbigan = BigBiGAN(module)
# Make input placeholders for x (`enc_ph`) and z (`gen_ph`).
enc_ph = bigbigan.make_encoder_ph()
gen_ph = bigbigan.make_generator_ph()
# Compute samples G(z) from encoder input z (`gen_ph`).
gen_samples = bigbigan.generate(gen_ph)
# Compute reconstructions G(E(x)) of encoder input x (`enc_ph`).
recon_x = bigbigan.reconstruct_x(enc_ph, upsample=True)
# Compute encoder features used for representation learning evaluations given
# encoder input x (`enc_ph`).
enc_features = bigbigan.encode(enc_ph, return_all_features=True)
# Compute discriminator scores for encoder pairs (x, E(x)) given x (`enc_ph`)
# and generator pairs (G(z), z) given z (`gen_ph`).
disc_scores_enc = bigbigan.discriminate(*bigbigan.enc_pairs_for_disc(enc_ph))
disc_scores_gen = bigbigan.discriminate(*bigbigan.gen_pairs_for_disc(gen_ph))
# Compute losses.
losses = bigbigan.losses(enc_ph, gen_ph)
INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore
Создайте сеанс TensorFlow и инициализируйте переменные
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
Образцы генератора
Во- первых, мы будем визуализировать образцы из pretrained генератора BigBiGAN путем выборки генератора входов z
от стандартного гауссова (через np.random.randn
) и отображения изображения , она производит. Пока мы не выходим за рамки возможностей стандартного GAN - пока мы просто используем генератор (и игнорируем кодировщик).
feed_dict = {gen_ph: np.random.randn(32, 120)}
_out_samples = sess.run(gen_samples, feed_dict=feed_dict)
print('samples shape:', _out_samples.shape)
imshow(imgrid(image_to_uint8(_out_samples), cols=4))
samples shape: (32, 128, 128, 3)
Загрузка test_images
из набора данных TF-Цветы
BigBiGAN обучается на ImageNet, но поскольку он слишком велик для работы в этой демонстрации, мы используем меньший набор данных TF-Flowers [1] в качестве входных данных для визуализации реконструкций и вычисления функций кодировщика.
В этой камере мы загружаем TF-цветы (загрузка набора данных , если это необходимо) и сохранить фиксированную партию 256x256 образцов RGB изображений в массиве NumPy test_images
.
[1] https://www.tensorflow.org/datasets/catalog/tf_flowers
def get_flowers_data():
"""Returns a [32, 256, 256, 3] np.array of preprocessed TF-Flowers samples."""
import tensorflow_datasets as tfds
ds, info = tfds.load('tf_flowers', split='train', with_info=True)
# Just get the images themselves as we don't need labels for this demo.
ds = ds.map(lambda x: x['image'])
# Filter out small images (with minor edge length <256).
ds = ds.filter(lambda x: tf.reduce_min(tf.shape(x)[:2]) >= 256)
# Take the center square crop of the image and resize to 256x256.
def crop_and_resize(image):
imsize = tf.shape(image)[:2]
minor_edge = tf.reduce_min(imsize)
start = (imsize - minor_edge) // 2
stop = start + minor_edge
cropped_image = image[start[0] : stop[0], start[1] : stop[1]]
resized_image = tf.image.resize_bicubic([cropped_image], [256, 256])[0]
return resized_image
ds = ds.map(crop_and_resize)
# Convert images from [0, 255] uint8 to [-1, 1] float32.
ds = ds.map(lambda image: tf.cast(image, tf.float32) / (255. / 2.) - 1)
# Take the first 32 samples.
ds = ds.take(32)
return np.array(list(tfds.as_numpy(ds)))
test_images = get_flowers_data()
2021-11-05 12:42:36.340550: W tensorflow/core/kernels/data/cache_dataset_ops.cc:768] The calling iterator did not fully read the dataset being cached. In order to avoid unexpected truncation of the dataset, the partially cached contents of the dataset will be discarded. This can happen if you have an input pipeline similar to `dataset.cache().take(k).repeat()`. You should use `dataset.take(k).cache().repeat()` instead.
Реконструкции
Теперь мы представляем BigBiGAN реконструкции, передавая реальные изображения через кодер и обратно через генератор, вычисления G(E(x))
, данные изображения x
. Ниже входные изображения x
показаны в левой колонке, а соответствующие реконструкции, показаны справа.
Обратите внимание, что реконструкции не являются точным совпадением пикселей с входными изображениями; скорее, они имеют тенденцию захватывать семантическое содержание более высокого уровня ввода, «забывая» большую часть деталей низкого уровня. Это говорит о том, что кодировщик BigBiGAN может научиться улавливать типы семантической информации высокого уровня об изображениях, которые мы хотели бы видеть в подходе к обучению представлению.
Также обратите внимание, что необработанные реконструкции входных изображений 256x256 имеют более низкое разрешение, создаваемое нашим генератором - 128x128. Мы увеличиваем их выборку для визуализации.
test_images_batch = test_images[:16]
_out_recons = sess.run(recon_x, feed_dict={enc_ph: test_images_batch})
print('reconstructions shape:', _out_recons.shape)
inputs_and_recons = interleave(test_images_batch, _out_recons)
print('inputs_and_recons shape:', inputs_and_recons.shape)
imshow(imgrid(image_to_uint8(inputs_and_recons), cols=2))
reconstructions shape: (16, 256, 256, 3) inputs_and_recons shape: (32, 256, 256, 3)
Особенности кодировщика
Теперь мы продемонстрируем, как вычислять функции из кодировщика, используемого для оценок обучения стандартному представлению.
Эти характеристики могут использоваться в линейном классификаторе или классификаторе на основе ближайших соседей. Мы включили стандартную функцию , принятую после глобального среднего Пулы (ключ avepool_feat
), а также большой функцию «BN + CReLU» (ключ bn_crelu_feat
) , используемая для достижения наилучших результатов.
_out_features = sess.run(enc_features, feed_dict={enc_ph: test_images_batch})
print('AvePool features shape:', _out_features['avepool_feat'].shape)
print('BN+CReLU features shape:', _out_features['bn_crelu_feat'].shape)
AvePool features shape: (16, 2048) BN+CReLU features shape: (16, 4096)
Баллы дискриминатора и проигрыши
Наконец, мы вычислим оценки дискриминатора и потери для пакетов пар кодировщиков и генераторов. Эти потери можно передать оптимизатору для обучения BigBiGAN.
Мы используем нашу партию изображений выше как входы кодера x
, вычисление счетов кодера в качестве D(x, E(x))
. Для входов генератора мы образец z
от а 120D стандартного гауссовский с помощью np.random.randn
, вычислительное счет генератора в качестве D(G(z), z)
.
Дискриминатор предсказывает совместную оценку score_xz
для (x, z)
пара, а также одинарные оценки score_x
и score_z
для x
и z
один, соответственно. Он обучен давать высокие (положительные) оценки парам кодировщиков и низкие (отрицательные) оценки парам генераторов. Это в основном справедливо ниже, хотя унарный score_z
является отрицательным в обеих случаях, указывая , что кодер выводит E(x)
напоминают реальные образцы из гауссовых.
feed_dict = {enc_ph: test_images, gen_ph: np.random.randn(32, 120)}
_out_scores_enc, _out_scores_gen, _out_losses = sess.run(
[disc_scores_enc, disc_scores_gen, losses], feed_dict=feed_dict)
print('Encoder scores:', {k: v.mean() for k, v in _out_scores_enc.items()})
print('Generator scores:', {k: v.mean() for k, v in _out_scores_gen.items()})
print('Losses:', _out_losses)
Encoder scores: {'score_xz': 0.6921617, 'score_z': -0.50248873, 'score_x': 1.4621685} Generator scores: {'score_xz': -0.8883822, 'score_z': -0.45992172, 'score_x': -0.5907474} Losses: {'disc': 1.2274433, 'enc': 0.55200976, 'gen': 0.64635044}