tfmot.clustering.keras.strip_clustering
Stay organized with collections
Save and categorize content based on your preferences.
Strips clustering wrappers from the model.
tfmot.clustering.keras.strip_clustering(
model
)
Used in the notebooks
Once a model has been clustered, this method can be used
to restore the original model with the clustered weights.
Only sequential and functional models are supported for now.
Returns |
A keras model with clustering wrappers removed.
|
Raises |
ValueError
|
if the model is not a tf.keras.Model instance.
|
NotImplementedError
|
if the model is a subclass model.
|
Usage:
orig_model = tf.keras.Model(inputs, outputs)
clustered_model = cluster_weights(orig_model)
exported_model = strip_clustering(clustered_model)
The exported_model and the orig_model have the same structure.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-05-26 UTC.
[null,null,["Last updated 2023-05-26 UTC."],[],[],null,["# tfmot.clustering.keras.strip_clustering\n\n\u003cbr /\u003e\n\n|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/model-optimization/blob/v0.7.5/tensorflow_model_optimization/python/core/clustering/keras/cluster.py#L300-L367) |\n\nStrips clustering wrappers from the model. \n\n tfmot.clustering.keras.strip_clustering(\n model\n )\n\n### Used in the notebooks\n\n| Used in the guide |\n|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| - [Weight clustering in Keras example](https://www.tensorflow.org/model_optimization/guide/clustering/clustering_example) - [Cluster preserving quantization aware training (CQAT) Keras example](https://www.tensorflow.org/model_optimization/guide/combine/cqat_example) - [Sparsity and cluster preserving quantization aware training (PCQAT) Keras example](https://www.tensorflow.org/model_optimization/guide/combine/pcqat_example) - [Sparsity preserving clustering Keras example](https://www.tensorflow.org/model_optimization/guide/combine/sparse_clustering_example) |\n\nOnce a model has been clustered, this method can be used\nto restore the original model with the clustered weights.\n\nOnly sequential and functional models are supported for now.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|---------|-----------------------------------------------------------------------------------------------------------------|\n| `model` | A [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) instance with clustered layers. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A keras model with clustering wrappers removed. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|-----------------------|---------------------------------------------------------------------------------------------------------------|\n| `ValueError` | if the model is not a [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) instance. |\n| `NotImplementedError` | if the model is a subclass model. |\n\n\u003cbr /\u003e\n\n#### Usage:\n\n orig_model = tf.keras.Model(inputs, outputs)\n clustered_model = cluster_weights(orig_model)\n exported_model = strip_clustering(clustered_model)\n\nThe exported_model and the orig_model have the same structure."]]