tfmot.quantization.keras.remove_input_range
Remove the input range.
tfmot.quantization.keras.remove_input_range(
model
)
Example:
model = keras.Sequential([
layers.Dense(10, activation='relu', input_shape=(100,)),
quantize_annotate_layer(layers.Dense(2, activation='sigmoid'))
])
with quantize.quantize_scope():
model = quantize_annotate_model(model)
model = quantize_apply(model)
model = remove_input_range(model)
In certain cases, a desired input range is not required if the model itself is
internally used.
Args |
model
|
A tf.keras Sequential or Functional model which has been quantized.
|
Returns |
Returns a new tf.keras model removed input range.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-05-26 UTC.
[null,null,["Last updated 2023-05-26 UTC."],[],[]]