الطبقات الاحتمالية TFP: التشفير التلقائي المتغير

عرض على TensorFlow.org تشغيل في Google Colab عرض المصدر على جيثب تحميل دفتر

في هذا المثال نوضح كيفية ملاءمة المشفر التلقائي المتغير باستخدام "الطبقات الاحتمالية" الخاصة بـ TFP.

التبعيات والمتطلبات

يستورد

اجعل الأمور سريعة!

قبل أن نتعمق ، دعنا نتأكد من أننا نستخدم وحدة معالجة الرسومات لهذا العرض التوضيحي.

للقيام بذلك ، حدد "وقت التشغيل" -> "تغيير نوع وقت التشغيل" -> "مسرع الأجهزة" -> "GPU".

سيتحقق المقتطف التالي من أن لدينا حق الوصول إلى وحدة معالجة الرسومات.

if tf.test.gpu_device_name() != '/device:GPU:0':
  print('WARNING: GPU device not found.')
else:
  print('SUCCESS: Found GPU: {}'.format(tf.test.gpu_device_name()))
SUCCESS: Found GPU: /device:GPU:0

تحميل مجموعة البيانات

datasets, datasets_info = tfds.load(name='mnist',
                                    with_info=True,
                                    as_supervised=False)

def _preprocess(sample):
  image = tf.cast(sample['image'], tf.float32) / 255.  # Scale to unit interval.
  image = image < tf.random.uniform(tf.shape(image))   # Randomly binarize.
  return image, image

train_dataset = (datasets['train']
                 .map(_preprocess)
                 .batch(256)
                 .prefetch(tf.data.AUTOTUNE)
                 .shuffle(int(10e3)))
eval_dataset = (datasets['test']
                .map(_preprocess)
                .batch(256)
                .prefetch(tf.data.AUTOTUNE))

لاحظ أن المعالجة المسبقة () أعلاه عوائد image, image بدلا من مجرد image بسبب تعيين Keras تصل لنماذج التمييزية مع (على سبيل المثال، والتسمية) شكل المدخلات، أي \(p\theta(y|x)\). لأن الهدف من VAE هو استعادة مدخلات العاشر من العاشر نفسها (أي \(p_\theta(x|x)\))، الزوج البيانات (على سبيل المثال، مثلا).

VAE كود جولف

حدد النموذج.

input_shape = datasets_info.features['image'].shape
encoded_size = 16
base_depth = 32
prior = tfd.Independent(tfd.Normal(loc=tf.zeros(encoded_size), scale=1),
                        reinterpreted_batch_ndims=1)
encoder = tfk.Sequential([
    tfkl.InputLayer(input_shape=input_shape),
    tfkl.Lambda(lambda x: tf.cast(x, tf.float32) - 0.5),
    tfkl.Conv2D(base_depth, 5, strides=1,
                padding='same', activation=tf.nn.leaky_relu),
    tfkl.Conv2D(base_depth, 5, strides=2,
                padding='same', activation=tf.nn.leaky_relu),
    tfkl.Conv2D(2 * base_depth, 5, strides=1,
                padding='same', activation=tf.nn.leaky_relu),
    tfkl.Conv2D(2 * base_depth, 5, strides=2,
                padding='same', activation=tf.nn.leaky_relu),
    tfkl.Conv2D(4 * encoded_size, 7, strides=1,
                padding='valid', activation=tf.nn.leaky_relu),
    tfkl.Flatten(),
    tfkl.Dense(tfpl.MultivariateNormalTriL.params_size(encoded_size),
               activation=None),
    tfpl.MultivariateNormalTriL(
        encoded_size,
        activity_regularizer=tfpl.KLDivergenceRegularizer(prior)),
])
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/linalg/linear_operator_lower_triangular.py:158: calling LinearOperator.__init__ (from tensorflow.python.ops.linalg.linear_operator) with graph_parents is deprecated and will be removed in a future version.
Instructions for updating:
Do not pass `graph_parents`.  They will  no longer be used.
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/linalg/linear_operator_lower_triangular.py:158: calling LinearOperator.__init__ (from tensorflow.python.ops.linalg.linear_operator) with graph_parents is deprecated and will be removed in a future version.
Instructions for updating:
Do not pass `graph_parents`.  They will  no longer be used.
decoder = tfk.Sequential([
    tfkl.InputLayer(input_shape=[encoded_size]),
    tfkl.Reshape([1, 1, encoded_size]),
    tfkl.Conv2DTranspose(2 * base_depth, 7, strides=1,
                         padding='valid', activation=tf.nn.leaky_relu),
    tfkl.Conv2DTranspose(2 * base_depth, 5, strides=1,
                         padding='same', activation=tf.nn.leaky_relu),
    tfkl.Conv2DTranspose(2 * base_depth, 5, strides=2,
                         padding='same', activation=tf.nn.leaky_relu),
    tfkl.Conv2DTranspose(base_depth, 5, strides=1,
                         padding='same', activation=tf.nn.leaky_relu),
    tfkl.Conv2DTranspose(base_depth, 5, strides=2,
                         padding='same', activation=tf.nn.leaky_relu),
    tfkl.Conv2DTranspose(base_depth, 5, strides=1,
                         padding='same', activation=tf.nn.leaky_relu),
    tfkl.Conv2D(filters=1, kernel_size=5, strides=1,
                padding='same', activation=None),
    tfkl.Flatten(),
    tfpl.IndependentBernoulli(input_shape, tfd.Bernoulli.logits),
])
vae = tfk.Model(inputs=encoder.inputs,
                outputs=decoder(encoder.outputs[0]))

قم بالاستدلال.

negloglik = lambda x, rv_x: -rv_x.log_prob(x)

vae.compile(optimizer=tf.optimizers.Adam(learning_rate=1e-3),
            loss=negloglik)

_ = vae.fit(train_dataset,
            epochs=15,
            validation_data=eval_dataset)
Epoch 1/15
235/235 [==============================] - 14s 61ms/step - loss: 206.5541 - val_loss: 163.1924
Epoch 2/15
235/235 [==============================] - 14s 59ms/step - loss: 151.1891 - val_loss: 143.6748
Epoch 3/15
235/235 [==============================] - 14s 58ms/step - loss: 141.3275 - val_loss: 137.9188
Epoch 4/15
235/235 [==============================] - 14s 58ms/step - loss: 136.7453 - val_loss: 133.2726
Epoch 5/15
235/235 [==============================] - 14s 58ms/step - loss: 132.3803 - val_loss: 131.8343
Epoch 6/15
235/235 [==============================] - 14s 58ms/step - loss: 129.2451 - val_loss: 127.1935
Epoch 7/15
235/235 [==============================] - 14s 59ms/step - loss: 126.0975 - val_loss: 123.6789
Epoch 8/15
235/235 [==============================] - 14s 58ms/step - loss: 124.0565 - val_loss: 122.5058
Epoch 9/15
235/235 [==============================] - 14s 58ms/step - loss: 122.9974 - val_loss: 121.9544
Epoch 10/15
235/235 [==============================] - 14s 58ms/step - loss: 121.7349 - val_loss: 120.8735
Epoch 11/15
235/235 [==============================] - 14s 58ms/step - loss: 121.0856 - val_loss: 120.1340
Epoch 12/15
235/235 [==============================] - 14s 58ms/step - loss: 120.2232 - val_loss: 121.3554
Epoch 13/15
235/235 [==============================] - 14s 58ms/step - loss: 119.8123 - val_loss: 119.2351
Epoch 14/15
235/235 [==============================] - 14s 58ms/step - loss: 119.2685 - val_loss: 118.2133
Epoch 15/15
235/235 [==============================] - 14s 59ms/step - loss: 118.8895 - val_loss: 119.4771

انظر ما ، لا الأيدي موتر!

# We'll just examine ten random digits.
x = next(iter(eval_dataset))[0][:10]
xhat = vae(x)
assert isinstance(xhat, tfd.Distribution)

مؤامرة الصورة Util

print('Originals:')
display_imgs(x)

print('Decoded Random Samples:')
display_imgs(xhat.sample())

print('Decoded Modes:')
display_imgs(xhat.mode())

print('Decoded Means:')
display_imgs(xhat.mean())
Originals:

بي إن جي

Decoded Random Samples:

بي إن جي

Decoded Modes:

بي إن جي

Decoded Means:

بي إن جي

# Now, let's generate ten never-before-seen digits.
z = prior.sample(10)
xtilde = decoder(z)
assert isinstance(xtilde, tfd.Distribution)
print('Randomly Generated Samples:')
display_imgs(xtilde.sample())

print('Randomly Generated Modes:')
display_imgs(xtilde.mode())

print('Randomly Generated Means:')
display_imgs(xtilde.mean())
Randomly Generated Samples:

بي إن جي

Randomly Generated Modes:

بي إن جي

Randomly Generated Means:

بي إن جي