Menghasilkan Gambar dengan BigGAN

Lihat di TensorFlow.org Jalankan di Google Colab Lihat di GitHub Unduh buku catatan Lihat model TF Hub

Notebook ini merupakan demo untuk generator gambar BigGAN tersedia di TF Hub .

Lihat kertas BigGAN di arXiv [1] untuk informasi lebih lanjut tentang model-model.

Setelah terhubung ke runtime, mulailah dengan mengikuti petunjuk berikut:

  1. (Opsional) Update yang dipilih module_path dalam kode sel pertama di bawah untuk memuat generator BigGAN untuk resolusi gambar yang berbeda.
  2. Klik Runtime> Jalankan semua untuk menjalankan setiap sel dalam rangka.
    • Setelah itu, visualisasi interaktif akan diperbarui secara otomatis saat Anda mengubah pengaturan menggunakan bilah geser dan menu tarik-turun.
    • Jika tidak, tekan tombol Play oleh sel untuk re-render output secara manual.

[1] Andrew Brock, Jeff Donahue, dan Karen Simonyan. Skala Besar GAN Pelatihan untuk High Fidelity Alam Gambar Sintesis . arXiv: 1809,11096, 2018.

Pertama, atur jalur modul. Secara default, kami memuat generator BigGAN-dalam untuk 256x256 gambar dari <a href="https://tfhub.dev/deepmind/biggan-deep-256/1">https://tfhub.dev/deepmind/biggan-deep-256/1</a> . Untuk menghasilkan 128x128 atau 512x512 gambar atau menggunakan generator BigGAN asli, komentar keluar aktif module_path pengaturan dan salah satu tanda komentar dari yang lain.

# BigGAN-deep models
# module_path = 'https://tfhub.dev/deepmind/biggan-deep-128/1'  # 128x128 BigGAN-deep
module_path = 'https://tfhub.dev/deepmind/biggan-deep-256/1'  # 256x256 BigGAN-deep
# module_path = 'https://tfhub.dev/deepmind/biggan-deep-512/1'  # 512x512 BigGAN-deep

# BigGAN (original) models
# module_path = 'https://tfhub.dev/deepmind/biggan-128/2'  # 128x128 BigGAN
# module_path = 'https://tfhub.dev/deepmind/biggan-256/2'  # 256x256 BigGAN
# module_path = 'https://tfhub.dev/deepmind/biggan-512/2'  # 512x512 BigGAN

Mempersiapkan

import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()

import os
import io
import IPython.display
import numpy as np
import PIL.Image
from scipy.stats import truncnorm
import tensorflow_hub as hub
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/compat/v2_compat.py:111: disable_resource_variables (from tensorflow.python.ops.variable_scope) is deprecated and will be removed in a future version.
Instructions for updating:
non-resource variables are not supported in the long term

Muat modul generator BigGAN dari TF Hub

tf.reset_default_graph()
print('Loading BigGAN module from:', module_path)
module = hub.Module(module_path)
inputs = {k: tf.placeholder(v.dtype, v.get_shape().as_list(), k)
          for k, v in module.get_input_info_dict().items()}
output = module(inputs)

print()
print('Inputs:\n', '\n'.join(
    '  {}: {}'.format(*kv) for kv in inputs.items()))
print()
print('Output:', output)
Loading BigGAN module from: https://tfhub.dev/deepmind/biggan-deep-256/1
INFO:tensorflow:Saver not created because there are no variables in the graph to restore
INFO:tensorflow:Saver not created because there are no variables in the graph to restore
Inputs:
   y: Tensor("y:0", shape=(?, 1000), dtype=float32)
  z: Tensor("z:0", shape=(?, 128), dtype=float32)
  truncation: Tensor("truncation:0", shape=(), dtype=float32)

Output: Tensor("module_apply_default/G_trunc_output:0", shape=(?, 256, 256, 3), dtype=float32)

Tentukan beberapa fungsi untuk pengambilan sampel dan menampilkan gambar BigGAN

input_z = inputs['z']
input_y = inputs['y']
input_trunc = inputs['truncation']

dim_z = input_z.shape.as_list()[1]
vocab_size = input_y.shape.as_list()[1]

def truncated_z_sample(batch_size, truncation=1., seed=None):
  state = None if seed is None else np.random.RandomState(seed)
  values = truncnorm.rvs(-2, 2, size=(batch_size, dim_z), random_state=state)
  return truncation * values

def one_hot(index, vocab_size=vocab_size):
  index = np.asarray(index)
  if len(index.shape) == 0:
    index = np.asarray([index])
  assert len(index.shape) == 1
  num = index.shape[0]
  output = np.zeros((num, vocab_size), dtype=np.float32)
  output[np.arange(num), index] = 1
  return output

def one_hot_if_needed(label, vocab_size=vocab_size):
  label = np.asarray(label)
  if len(label.shape) <= 1:
    label = one_hot(label, vocab_size)
  assert len(label.shape) == 2
  return label

def sample(sess, noise, label, truncation=1., batch_size=8,
           vocab_size=vocab_size):
  noise = np.asarray(noise)
  label = np.asarray(label)
  num = noise.shape[0]
  if len(label.shape) == 0:
    label = np.asarray([label] * num)
  if label.shape[0] != num:
    raise ValueError('Got # noise samples ({}) != # label samples ({})'
                     .format(noise.shape[0], label.shape[0]))
  label = one_hot_if_needed(label, vocab_size)
  ims = []
  for batch_start in range(0, num, batch_size):
    s = slice(batch_start, min(num, batch_start + batch_size))
    feed_dict = {input_z: noise[s], input_y: label[s], input_trunc: truncation}
    ims.append(sess.run(output, feed_dict=feed_dict))
  ims = np.concatenate(ims, axis=0)
  assert ims.shape[0] == num
  ims = np.clip(((ims + 1) / 2.0) * 256, 0, 255)
  ims = np.uint8(ims)
  return ims

def interpolate(A, B, num_interps):
  if A.shape != B.shape:
    raise ValueError('A and B must have the same shape to interpolate.')
  alphas = np.linspace(0, 1, num_interps)
  return np.array([(1-a)*A + a*B for a in alphas])

def imgrid(imarray, cols=5, pad=1):
  if imarray.dtype != np.uint8:
    raise ValueError('imgrid input imarray must be uint8')
  pad = int(pad)
  assert pad >= 0
  cols = int(cols)
  assert cols >= 1
  N, H, W, C = imarray.shape
  rows = N // cols + int(N % cols != 0)
  batch_pad = rows * cols - N
  assert batch_pad >= 0
  post_pad = [batch_pad, pad, pad, 0]
  pad_arg = [[0, p] for p in post_pad]
  imarray = np.pad(imarray, pad_arg, 'constant', constant_values=255)
  H += pad
  W += pad
  grid = (imarray
          .reshape(rows, cols, H, W, C)
          .transpose(0, 2, 1, 3, 4)
          .reshape(rows*H, cols*W, C))
  if pad:
    grid = grid[:-pad, :-pad]
  return grid

def imshow(a, format='png', jpeg_fallback=True):
  a = np.asarray(a, dtype=np.uint8)
  data = io.BytesIO()
  PIL.Image.fromarray(a).save(data, format)
  im_data = data.getvalue()
  try:
    disp = IPython.display.display(IPython.display.Image(im_data))
  except IOError:
    if jpeg_fallback and format != 'jpeg':
      print(('Warning: image was too large to display in format "{}"; '
             'trying jpeg instead.').format(format))
      return imshow(a, format='jpeg')
    else:
      raise
  return disp

Buat sesi TensorFlow dan inisialisasi variabel

initializer = tf.global_variables_initializer()
sess = tf.Session()
sess.run(initializer)

Jelajahi sampel BigGAN dari kategori tertentu

Coba memvariasikan truncation nilai.

(Klik dua kali pada sel untuk melihat kode.)

Pengambilan sampel bersyarat kategori

png

Interpolasi antara sampel BigGAN

Coba setting yang berbeda category s dengan sama noise_seed s, atau sama category s dengan berbagai noise_seed s. Atau menjadi liar dan atur keduanya sesuka Anda!

(Klik dua kali pada sel untuk melihat kode.)

Interpolasi

png