TensorFlow.org에서 보기 | Google Colab에서 실행하기 | GitHub에서 소스 보기 | 노트북 다운로드하기 |
"최고" 모델 또는 모델 가중치/매개변수를 지속적으로 저장하면 많은 이점이 있습니다. 이러한 이점에는 교육 진행 상황을 추적하고 다른 저장된 상태에서 저장된 모델을 로드하기 등이 있습니다.
TensorFlow 1에서 tf.estimator.Estimator
API로 훈련/검증을 진행하는 동안에 체크포인트 저장을 구성하려면 tf.estimator.RunConfig
에서 일정을 지정하거나 tf.estimator.CheckpointSaverHook
를 사용합니다. 이 가이드는 이 워크플로에서 TensorFlow 2 Keras API로 마이그레이션하는 방법을 보여줍니다.
TensorFlow 2에서는 다음과 같은 다양한 방법으로 tf.keras.callbacks.ModelCheckpoint
를 구성할 수 있습니다.
save_best_only=True
매개변수를 사용하여 모니터링되는 메트릭에 따라 '최고' 버전을 저장합니다. 예를 들어 여기서monitor
는'loss'
,'val_loss'
,'accuracy', or
'val_accuracy'`일 수 있습니다.- 정 빈도로 계속 저장합니다(
save_freq
인수 사용). save_weights_only
를True
로 설정하여 전체 모델 대신 가중치/매개변수만 저장합니다.
자세한 내용은 tf.keras.callbacks.ModelCheckpoint
API 문서 및 모델 저장 및 로드하기 튜토리얼의 훈련하는 동안 체크포인트 저장하기 섹션을 참고합니다. Keras 모델 저장 및 로드하기 가이드의 TF 체크포인트 형식 섹션에서 체크포인트 형식에 대한 자세한 내용을 확인할 수 있습니다. 또한 내결함성을 추가하기 위해 수동 체크포인트에 tf.keras.callbacks.BackupAndRestore
또는 tf.train.Checkpoint
를 사용할 수 있습니다. 내결함성 마이그레이션 가이드에서 자세히 알아보세요.
Keras 콜백은 내장 Keras Model.fit
/Model.evaluate
/Model.predict
API에서 훈련/평가/예측을 진행하는 동안 서로 다른 포인트에서 호출되는 객체입니다. 가이드 끝에 있는 다음 단계 섹션에서 자세히 알아보세요.
설치하기
데모를 위해 가져오기 및 간단한 데이터세트로 시작해 보겠습니다.
import tensorflow.compat.v1 as tf1
import tensorflow as tf
import numpy as np
import tempfile
2022-12-14 20:18:02.737194: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory 2022-12-14 20:18:02.737296: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory 2022-12-14 20:18:02.737307: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz 11490434/11490434 [==============================] - 0s 0us/step
TensorFlow 1: tf.estimator API를 사용하여 체크포인트 저장하기
이 TensorFlow 1 예제는 tf.estimator.Estimator
API를 사용하여 훈련/평가를 진행하는 동안 모든 단계에서 체크포인트를 저장하도록 tf.estimator.RunConfig
를 구성하는 방법을 보여줍니다.
feature_columns = [tf1.feature_column.numeric_column("x", shape=[28, 28])]
config = tf1.estimator.RunConfig(save_summary_steps=1,
save_checkpoints_steps=1)
path = tempfile.mkdtemp()
classifier = tf1.estimator.DNNClassifier(
feature_columns=feature_columns,
hidden_units=[256, 32],
optimizer=tf1.train.AdamOptimizer(0.001),
n_classes=10,
dropout=0.2,
model_dir=path,
config = config
)
train_input_fn = tf1.estimator.inputs.numpy_input_fn(
x={"x": x_train},
y=y_train.astype(np.int32),
num_epochs=10,
batch_size=50,
shuffle=True,
)
test_input_fn = tf1.estimator.inputs.numpy_input_fn(
x={"x": x_test},
y=y_test.astype(np.int32),
num_epochs=10,
shuffle=False
)
train_spec = tf1.estimator.TrainSpec(input_fn=train_input_fn, max_steps=10)
eval_spec = tf1.estimator.EvalSpec(input_fn=test_input_fn,
steps=10,
throttle_secs=0)
tf1.estimator.train_and_evaluate(estimator=classifier,
train_spec=train_spec,
eval_spec=eval_spec)
INFO:tensorflow:Using config: {'_model_dir': '/tmpfs/tmp/tmp5q4yfi6u', '_tf_random_seed': None, '_save_summary_steps': 1, '_save_checkpoints_steps': 1, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} WARNING:tensorflow:From /tmpfs/tmp/ipykernel_24812/3980459272.py:18: The name tf.estimator.inputs is deprecated. Please use tf.compat.v1.estimator.inputs instead. WARNING:tensorflow:From /tmpfs/tmp/ipykernel_24812/3980459272.py:18: The name tf.estimator.inputs.numpy_input_fn is deprecated. Please use tf.compat.v1.estimator.inputs.numpy_input_fn instead. INFO:tensorflow:Not using Distribute Coordinator. INFO:tensorflow:Running training and evaluation locally (non-distributed). INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps 1 or save_checkpoints_secs None. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/training/training_util.py:396: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_queue_runner.py:60: QueueRunner.__init__ (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow_estimator/python/estimator/inputs/queues/feeding_functions.py:491: add_queue_runner (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/training/monitored_session.py:910: start_queue_runners (from tensorflow.python.training.queue_runner_impl) is deprecated and will be removed in a future version. Instructions for updating: To construct input pipelines, use the `tf.data` module. 2022-12-14 20:18:08.687025: W tensorflow/core/common_runtime/type_inference.cc:339] Type inference failed. This indicates an invalid graph that escaped type checking. Error message: INVALID_ARGUMENT: expected compatible input types, but input 1: type_id: TFT_OPTIONAL args { type_id: TFT_PRODUCT args { type_id: TFT_TENSOR args { type_id: TFT_INT64 } } } is neither a subtype nor a supertype of the combined inputs preceding it: type_id: TFT_OPTIONAL args { type_id: TFT_PRODUCT args { type_id: TFT_TENSOR args { type_id: TFT_INT32 } } } while inferring type of node 'dnn/zero_fraction/cond/output/_18' INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmpfs/tmp/tmp5q4yfi6u/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 1... INFO:tensorflow:Saving checkpoints for 1 into /tmpfs/tmp/tmp5q4yfi6u/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 1... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:18:09 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-1 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.29615s INFO:tensorflow:Finished evaluation at 2022-12-14-20:18:10 INFO:tensorflow:Saving dict for global step 1: accuracy = 0.1140625, average_loss = 2.3028054, global_step = 1, loss = 294.7591 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 1: /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-1 INFO:tensorflow:loss = 125.672775, step = 0 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 2... INFO:tensorflow:Saving checkpoints for 2 into /tmpfs/tmp/tmp5q4yfi6u/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 2... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:18:10 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-2 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.29242s INFO:tensorflow:Finished evaluation at 2022-12-14-20:18:10 INFO:tensorflow:Saving dict for global step 2: accuracy = 0.14765625, average_loss = 2.2573345, global_step = 2, loss = 288.9388 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 2: /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-2 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 3... INFO:tensorflow:Saving checkpoints for 3 into /tmpfs/tmp/tmp5q4yfi6u/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 3... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:18:11 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-3 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.29277s INFO:tensorflow:Finished evaluation at 2022-12-14-20:18:11 INFO:tensorflow:Saving dict for global step 3: accuracy = 0.1984375, average_loss = 2.2285006, global_step = 3, loss = 285.24808 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 3: /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-3 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 4... INFO:tensorflow:Saving checkpoints for 4 into /tmpfs/tmp/tmp5q4yfi6u/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 4... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:18:11 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-4 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.28378s INFO:tensorflow:Finished evaluation at 2022-12-14-20:18:11 INFO:tensorflow:Saving dict for global step 4: accuracy = 0.259375, average_loss = 2.1974502, global_step = 4, loss = 281.27362 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 4: /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-4 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 5... INFO:tensorflow:Saving checkpoints for 5 into /tmpfs/tmp/tmp5q4yfi6u/model.ckpt. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/training/saver.py:1064: remove_checkpoint (from tensorflow.python.checkpoint.checkpoint_management) is deprecated and will be removed in a future version. Instructions for updating: Use standard file APIs to delete files with this prefix. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 5... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:18:12 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-5 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.28637s INFO:tensorflow:Finished evaluation at 2022-12-14-20:18:12 INFO:tensorflow:Saving dict for global step 5: accuracy = 0.334375, average_loss = 2.1632705, global_step = 5, loss = 276.89862 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 5: /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-5 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 6... INFO:tensorflow:Saving checkpoints for 6 into /tmpfs/tmp/tmp5q4yfi6u/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 6... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:18:12 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-6 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.30018s INFO:tensorflow:Finished evaluation at 2022-12-14-20:18:13 INFO:tensorflow:Saving dict for global step 6: accuracy = 0.396875, average_loss = 2.1213017, global_step = 6, loss = 271.5266 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 6: /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-6 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 7... INFO:tensorflow:Saving checkpoints for 7 into /tmpfs/tmp/tmp5q4yfi6u/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 7... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:18:13 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-7 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.28544s INFO:tensorflow:Finished evaluation at 2022-12-14-20:18:13 INFO:tensorflow:Saving dict for global step 7: accuracy = 0.434375, average_loss = 2.0747333, global_step = 7, loss = 265.56586 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 7: /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-7 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 8... INFO:tensorflow:Saving checkpoints for 8 into /tmpfs/tmp/tmp5q4yfi6u/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 8... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:18:13 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-8 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.28652s INFO:tensorflow:Finished evaluation at 2022-12-14-20:18:14 INFO:tensorflow:Saving dict for global step 8: accuracy = 0.42734376, average_loss = 2.026875, global_step = 8, loss = 259.44 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 8: /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-8 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 9... INFO:tensorflow:Saving checkpoints for 9 into /tmpfs/tmp/tmp5q4yfi6u/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 9... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:18:14 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-9 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.28533s INFO:tensorflow:Finished evaluation at 2022-12-14-20:18:14 INFO:tensorflow:Saving dict for global step 9: accuracy = 0.4390625, average_loss = 1.982246, global_step = 9, loss = 253.7275 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 9: /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-9 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 10... INFO:tensorflow:Saving checkpoints for 10 into /tmpfs/tmp/tmp5q4yfi6u/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 10... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-12-14T20:18:15 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-10 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1/10] INFO:tensorflow:Evaluation [2/10] INFO:tensorflow:Evaluation [3/10] INFO:tensorflow:Evaluation [4/10] INFO:tensorflow:Evaluation [5/10] INFO:tensorflow:Evaluation [6/10] INFO:tensorflow:Evaluation [7/10] INFO:tensorflow:Evaluation [8/10] INFO:tensorflow:Evaluation [9/10] INFO:tensorflow:Evaluation [10/10] INFO:tensorflow:Inference Time : 0.28554s INFO:tensorflow:Finished evaluation at 2022-12-14-20:18:15 INFO:tensorflow:Saving dict for global step 10: accuracy = 0.45, average_loss = 1.9367892, global_step = 10, loss = 247.90901 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 10: /tmpfs/tmp/tmp5q4yfi6u/model.ckpt-10 INFO:tensorflow:Loss for final step: 102.29101. ({'accuracy': 0.45, 'average_loss': 1.9367892, 'loss': 247.90901, 'global_step': 10}, [])
%ls {classifier.model_dir}
checkpoint eval/ events.out.tfevents.1671049088.kokoro-gcp-ubuntu-prod-1438429585 graph.pbtxt model.ckpt-10.data-00000-of-00001 model.ckpt-10.index model.ckpt-10.meta model.ckpt-6.data-00000-of-00001 model.ckpt-6.index model.ckpt-6.meta model.ckpt-7.data-00000-of-00001 model.ckpt-7.index model.ckpt-7.meta model.ckpt-8.data-00000-of-00001 model.ckpt-8.index model.ckpt-8.meta model.ckpt-9.data-00000-of-00001 model.ckpt-9.index model.ckpt-9.meta
TensorFlow 2: Model.fit을 위해 Keras 콜백을 사용하여 체크포인트 저장하기
TensorFlow 2에서 훈련/평가에 대해 내장 Keras Model.fit
(또는 Model.evaluate
)을 사용하는 경우 tf.keras.callbacks.ModelCheckpoint
를 구성하고 Model.fit
(또는 Model.evaluate
)의 callbacks
매개변수로 전달할 수 있습니다(API 문서 및 내장 메서드를 사용하여 훈련 및 평가하기 가이드의 콜백 사용하기 섹션에서 자세한 내용 확인).
아래 예제에서는 tf.keras.callbacks.ModelCheckpoint
콜백을 사용하여 임시 디렉터리에 체크포인트를 저장합니다.
def create_model():
return tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model = create_model()
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'],
steps_per_execution=10)
log_dir = tempfile.mkdtemp()
model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
filepath=log_dir)
model.fit(x=x_train,
y=y_train,
epochs=10,
validation_data=(x_test, y_test),
callbacks=[model_checkpoint_callback])
Epoch 1/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.2214 - accuracy: 0.9346INFO:tensorflow:Assets written to: /tmpfs/tmp/tmp6wzij4ud/assets 1875/1875 [==============================] - 5s 2ms/step - loss: 0.2208 - accuracy: 0.9348 - val_loss: 0.1155 - val_accuracy: 0.9640 Epoch 2/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0974 - accuracy: 0.9701INFO:tensorflow:Assets written to: /tmpfs/tmp/tmp6wzij4ud/assets 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0973 - accuracy: 0.9701 - val_loss: 0.0810 - val_accuracy: 0.9739 Epoch 3/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0685 - accuracy: 0.9783INFO:tensorflow:Assets written to: /tmpfs/tmp/tmp6wzij4ud/assets 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0682 - accuracy: 0.9783 - val_loss: 0.0745 - val_accuracy: 0.9769 Epoch 4/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0540 - accuracy: 0.9827INFO:tensorflow:Assets written to: /tmpfs/tmp/tmp6wzij4ud/assets 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0543 - accuracy: 0.9827 - val_loss: 0.0766 - val_accuracy: 0.9769 Epoch 5/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0433 - accuracy: 0.9861INFO:tensorflow:Assets written to: /tmpfs/tmp/tmp6wzij4ud/assets 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0432 - accuracy: 0.9861 - val_loss: 0.0748 - val_accuracy: 0.9796 Epoch 6/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0356 - accuracy: 0.9883INFO:tensorflow:Assets written to: /tmpfs/tmp/tmp6wzij4ud/assets 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0354 - accuracy: 0.9883 - val_loss: 0.0590 - val_accuracy: 0.9818 Epoch 7/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0306 - accuracy: 0.9896INFO:tensorflow:Assets written to: /tmpfs/tmp/tmp6wzij4ud/assets 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0309 - accuracy: 0.9896 - val_loss: 0.0695 - val_accuracy: 0.9791 Epoch 8/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0284 - accuracy: 0.9906INFO:tensorflow:Assets written to: /tmpfs/tmp/tmp6wzij4ud/assets 1875/1875 [==============================] - 3s 2ms/step - loss: 0.0283 - accuracy: 0.9906 - val_loss: 0.0671 - val_accuracy: 0.9830 Epoch 9/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0251 - accuracy: 0.9912INFO:tensorflow:Assets written to: /tmpfs/tmp/tmp6wzij4ud/assets 1875/1875 [==============================] - 3s 1ms/step - loss: 0.0250 - accuracy: 0.9912 - val_loss: 0.0772 - val_accuracy: 0.9815 Epoch 10/10 1860/1875 [============================>.] - ETA: 0s - loss: 0.0222 - accuracy: 0.9925INFO:tensorflow:Assets written to: /tmpfs/tmp/tmp6wzij4ud/assets 1875/1875 [==============================] - 3s 1ms/step - loss: 0.0223 - accuracy: 0.9925 - val_loss: 0.0713 - val_accuracy: 0.9817 <keras.callbacks.History at 0x7fd3ec5d0520>
%ls {model_checkpoint_callback.filepath}
assets/ fingerprint.pb keras_metadata.pb saved_model.pb variables/
다음 단계
체크포인트에 대한 자세한 내용:
- API 문서:
tf.keras.callbacks.ModelCheckpoint
- 튜토리얼: 모델 저장 및 로드하기(훈련하는 동안 체크포인트 저장하기 섹션)
- 가이드: Keras 모델 저장 및 로드하기(TF 체크포인트 형식 섹션)
콜백에 대한 자세한 내용:
- API 문서:
tf.keras.callbacks.Callback
- 가이드: 자신만의 콜백 작성하기
- 가이드: 내장 메서드를 사용하여 훈련 및 평가하기(콜백 사용하기 섹션)
다음과 같은 마이그레이션 관련 리소스도 유용할 수 있습니다.
- 내결함성 마이그레이션 가이드:
Model.fit
의 경우tf.keras.callbacks.BackupAndRestore
, 사용자 정의 훈련 루프의 경우tf.train.Checkpoint
와tf.train.CheckpointManager
API - 조기 중단 마이그레이션 가이드: 내장 조기 중단 콜백인
tf.keras.callbacks.EarlyStopping
- TensorBoard 마이그레이션 가이드: TensorBoard를 사용하여 메트릭 추적 및 표시하기
- LoggingTensorHook 및 StopAtStepHook에서 Keras 콜백으로의 마이그레이션 가이드
- SessionRunHook에서 Keras 콜백을 수행하기 위한 가이드