Voir sur TensorFlow.org | Exécuter dans Google Colab | Voir la source sur GitHub | Télécharger le cahier |
Ce bloc-notes montre comment vous pouvez configurer l'entraînement du modèle avec un arrêt anticipé, d'abord dans TensorFlow 1 avec tf.estimator.Estimator
et un crochet d'arrêt anticipé, puis dans TensorFlow 2 avec les API Keras ou une boucle d'entraînement personnalisée. L'arrêt précoce est une technique de régularisation qui arrête l'entraînement si, par exemple, la perte de validation atteint un certain seuil.
Dans TensorFlow 2, il existe trois façons de mettre en œuvre l'arrêt anticipé :
- Utilisez un rappel Keras intégré —
tf.keras.callbacks.EarlyStopping
— et transmettez-le àModel.fit
. - Définissez un rappel personnalisé et transmettez-le à Keras
Model.fit
. - Écrivez une règle d'arrêt anticipé personnalisée dans une boucle d'entraînement personnalisée (avec
tf.GradientTape
).
Installer
import time
import numpy as np
import tensorflow as tf
import tensorflow.compat.v1 as tf1
import tensorflow_datasets as tfds
TensorFlow 1 : Arrêt précoce avec crochet d'arrêt précoce et tf.estimator
Commencez par définir les fonctions pour le chargement et le prétraitement du jeu de données MNIST, ainsi que la définition du modèle à utiliser avec tf.estimator.Estimator
:
def normalize_img(image, label):
return tf.cast(image, tf.float32) / 255., label
def _input_fn():
ds_train = tfds.load(
name='mnist',
split='train',
shuffle_files=True,
as_supervised=True)
ds_train = ds_train.map(
normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_train = ds_train.batch(128)
ds_train = ds_train.repeat(100)
return ds_train
def _eval_input_fn():
ds_test = tfds.load(
name='mnist',
split='test',
shuffle_files=True,
as_supervised=True)
ds_test = ds_test.map(
normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_test = ds_test.batch(128)
return ds_test
def _model_fn(features, labels, mode):
flatten = tf1.layers.Flatten()(features)
features = tf1.layers.Dense(128, 'relu')(flatten)
logits = tf1.layers.Dense(10)(features)
loss = tf1.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
optimizer = tf1.train.AdagradOptimizer(0.005)
train_op = optimizer.minimize(loss, global_step=tf1.train.get_global_step())
return tf1.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
Dans TensorFlow 1, l'arrêt anticipé fonctionne en configurant un hook d'arrêt anticipé avec tf.estimator.experimental.make_early_stopping_hook
. Vous passez le hook à la méthode make_early_stopping_hook
en tant que paramètre pour should_stop_fn
, qui peut accepter une fonction sans aucun argument. La formation s'arrête une fois que should_stop_fn
renvoie True
.
L'exemple suivant montre comment mettre en œuvre une technique d'arrêt précoce qui limite le temps d'entraînement à un maximum de 20 secondes :
estimator = tf1.estimator.Estimator(model_fn=_model_fn)
start_time = time.time()
max_train_seconds = 20
def should_stop_fn():
return time.time() - start_time > max_train_seconds
early_stopping_hook = tf1.estimator.experimental.make_early_stopping_hook(
estimator=estimator,
should_stop_fn=should_stop_fn,
run_every_secs=1,
run_every_steps=None)
train_spec = tf1.estimator.TrainSpec(
input_fn=_input_fn,
hooks=[early_stopping_hook])
eval_spec = tf1.estimator.EvalSpec(input_fn=_eval_input_fn)
tf1.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
INFO:tensorflow:Using default config. WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpocmc6_bo INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpocmc6_bo', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} INFO:tensorflow:Not using Distribute Coordinator. INFO:tensorflow:Running training and evaluation locally (non-distributed). INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps None or save_checkpoints_secs 600. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/adagrad.py:77: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/adagrad.py:77: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpocmc6_bo/model.ckpt. INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpocmc6_bo/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:loss = 2.3545606, step = 0 INFO:tensorflow:loss = 2.3545606, step = 0 INFO:tensorflow:global_step/sec: 94.5711 INFO:tensorflow:global_step/sec: 94.5711 INFO:tensorflow:loss = 1.3383636, step = 100 (1.060 sec) INFO:tensorflow:loss = 1.3383636, step = 100 (1.060 sec) INFO:tensorflow:global_step/sec: 158.428 INFO:tensorflow:global_step/sec: 158.428 INFO:tensorflow:loss = 0.7937969, step = 200 (0.631 sec) INFO:tensorflow:loss = 0.7937969, step = 200 (0.631 sec) INFO:tensorflow:global_step/sec: 287.334 INFO:tensorflow:global_step/sec: 287.334 INFO:tensorflow:loss = 0.69060934, step = 300 (0.349 sec) INFO:tensorflow:loss = 0.69060934, step = 300 (0.349 sec) INFO:tensorflow:global_step/sec: 286.658 INFO:tensorflow:global_step/sec: 286.658 INFO:tensorflow:loss = 0.59314424, step = 400 (0.349 sec) INFO:tensorflow:loss = 0.59314424, step = 400 (0.349 sec) INFO:tensorflow:global_step/sec: 311.591 INFO:tensorflow:global_step/sec: 311.591 INFO:tensorflow:loss = 0.50495726, step = 500 (0.320 sec) INFO:tensorflow:loss = 0.50495726, step = 500 (0.320 sec) WARNING:tensorflow:It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 536 vs previous value: 536. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize. WARNING:tensorflow:It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 536 vs previous value: 536. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize. INFO:tensorflow:global_step/sec: 538.395 INFO:tensorflow:global_step/sec: 538.395 INFO:tensorflow:loss = 0.43083754, step = 600 (0.186 sec) INFO:tensorflow:loss = 0.43083754, step = 600 (0.186 sec) INFO:tensorflow:global_step/sec: 503.72 INFO:tensorflow:global_step/sec: 503.72 INFO:tensorflow:loss = 0.381118, step = 700 (0.198 sec) INFO:tensorflow:loss = 0.381118, step = 700 (0.198 sec) WARNING:tensorflow:It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 715 vs previous value: 715. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize. WARNING:tensorflow:It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 715 vs previous value: 715. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize. INFO:tensorflow:global_step/sec: 482.019 INFO:tensorflow:global_step/sec: 482.019 INFO:tensorflow:loss = 0.49349022, step = 800 (0.207 sec) INFO:tensorflow:loss = 0.49349022, step = 800 (0.207 sec) INFO:tensorflow:global_step/sec: 508.316 INFO:tensorflow:global_step/sec: 508.316 INFO:tensorflow:loss = 0.38730466, step = 900 (0.199 sec) INFO:tensorflow:loss = 0.38730466, step = 900 (0.199 sec) WARNING:tensorflow:It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 987 vs previous value: 987. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize. WARNING:tensorflow:It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 987 vs previous value: 987. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize. INFO:tensorflow:global_step/sec: 452.89 INFO:tensorflow:global_step/sec: 452.89 INFO:tensorflow:loss = 0.44916487, step = 1000 (0.219 sec) INFO:tensorflow:loss = 0.44916487, step = 1000 (0.219 sec) WARNING:tensorflow:It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 1042 vs previous value: 1042. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize. WARNING:tensorflow:It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 1042 vs previous value: 1042. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize. INFO:tensorflow:global_step/sec: 519.401 INFO:tensorflow:global_step/sec: 519.401 INFO:tensorflow:loss = 0.44320562, step = 1100 (0.192 sec) INFO:tensorflow:loss = 0.44320562, step = 1100 (0.192 sec) INFO:tensorflow:global_step/sec: 510.25 INFO:tensorflow:global_step/sec: 510.25 INFO:tensorflow:loss = 0.3758085, step = 1200 (0.196 sec) INFO:tensorflow:loss = 0.3758085, step = 1200 (0.196 sec) INFO:tensorflow:global_step/sec: 518.649 INFO:tensorflow:global_step/sec: 518.649 INFO:tensorflow:loss = 0.46760654, step = 1300 (0.193 sec) INFO:tensorflow:loss = 0.46760654, step = 1300 (0.193 sec) INFO:tensorflow:global_step/sec: 474.056 INFO:tensorflow:global_step/sec: 474.056 INFO:tensorflow:loss = 0.29544568, step = 1400 (0.211 sec) INFO:tensorflow:loss = 0.29544568, step = 1400 (0.211 sec) INFO:tensorflow:global_step/sec: 461.406 INFO:tensorflow:global_step/sec: 461.406 INFO:tensorflow:loss = 0.28616875, step = 1500 (0.217 sec) INFO:tensorflow:loss = 0.28616875, step = 1500 (0.217 sec) INFO:tensorflow:global_step/sec: 486.2 INFO:tensorflow:global_step/sec: 486.2 INFO:tensorflow:loss = 0.4114887, step = 1600 (0.206 sec) INFO:tensorflow:loss = 0.4114887, step = 1600 (0.206 sec) WARNING:tensorflow:It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 1678 vs previous value: 1678. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize. WARNING:tensorflow:It seems that global step (tf.train.get_global_step) has not been increased. Current value (could be stable): 1678 vs previous value: 1678. You could increase the global step by passing tf.train.get_global_step() to Optimizer.apply_gradients or Optimizer.minimize. INFO:tensorflow:global_step/sec: 507.701 INFO:tensorflow:global_step/sec: 507.701 INFO:tensorflow:loss = 0.35298553, step = 1700 (0.197 sec) INFO:tensorflow:loss = 0.35298553, step = 1700 (0.197 sec) INFO:tensorflow:global_step/sec: 490.541 INFO:tensorflow:global_step/sec: 490.541 INFO:tensorflow:loss = 0.3363277, step = 1800 (0.204 sec) INFO:tensorflow:loss = 0.3363277, step = 1800 (0.204 sec) INFO:tensorflow:global_step/sec: 460.083 INFO:tensorflow:global_step/sec: 460.083 INFO:tensorflow:loss = 0.50634325, step = 1900 (0.217 sec) INFO:tensorflow:loss = 0.50634325, step = 1900 (0.217 sec) INFO:tensorflow:global_step/sec: 436.782 INFO:tensorflow:global_step/sec: 436.782 INFO:tensorflow:loss = 0.2063987, step = 2000 (0.229 sec) INFO:tensorflow:loss = 0.2063987, step = 2000 (0.229 sec) INFO:tensorflow:global_step/sec: 475.841 INFO:tensorflow:global_step/sec: 475.841 INFO:tensorflow:loss = 0.27246287, step = 2100 (0.210 sec) INFO:tensorflow:loss = 0.27246287, step = 2100 (0.210 sec) INFO:tensorflow:global_step/sec: 483.322 INFO:tensorflow:global_step/sec: 483.322 INFO:tensorflow:loss = 0.31674564, step = 2200 (0.207 sec) INFO:tensorflow:loss = 0.31674564, step = 2200 (0.207 sec) INFO:tensorflow:global_step/sec: 442.257 INFO:tensorflow:global_step/sec: 442.257 INFO:tensorflow:loss = 0.3334998, step = 2300 (0.226 sec) INFO:tensorflow:loss = 0.3334998, step = 2300 (0.226 sec) INFO:tensorflow:global_step/sec: 476.38 INFO:tensorflow:global_step/sec: 476.38 INFO:tensorflow:loss = 0.2549953, step = 2400 (0.210 sec) INFO:tensorflow:loss = 0.2549953, step = 2400 (0.210 sec) INFO:tensorflow:global_step/sec: 467.543 INFO:tensorflow:global_step/sec: 467.543 INFO:tensorflow:loss = 0.21111101, step = 2500 (0.214 sec) INFO:tensorflow:loss = 0.21111101, step = 2500 (0.214 sec) INFO:tensorflow:global_step/sec: 497.051 INFO:tensorflow:global_step/sec: 497.051 INFO:tensorflow:loss = 0.15878338, step = 2600 (0.201 sec) INFO:tensorflow:loss = 0.15878338, step = 2600 (0.201 sec) INFO:tensorflow:global_step/sec: 461.785 INFO:tensorflow:global_step/sec: 461.785 INFO:tensorflow:loss = 0.31587577, step = 2700 (0.219 sec) INFO:tensorflow:loss = 0.31587577, step = 2700 (0.219 sec) INFO:tensorflow:global_step/sec: 493.743 INFO:tensorflow:global_step/sec: 493.743 INFO:tensorflow:loss = 0.47478187, step = 2800 (0.200 sec) INFO:tensorflow:loss = 0.47478187, step = 2800 (0.200 sec) INFO:tensorflow:global_step/sec: 463.477 INFO:tensorflow:global_step/sec: 463.477 INFO:tensorflow:loss = 0.2499526, step = 2900 (0.216 sec) INFO:tensorflow:loss = 0.2499526, step = 2900 (0.216 sec) INFO:tensorflow:global_step/sec: 538.27 INFO:tensorflow:global_step/sec: 538.27 INFO:tensorflow:loss = 0.34210858, step = 3000 (0.186 sec) INFO:tensorflow:loss = 0.34210858, step = 3000 (0.186 sec) INFO:tensorflow:global_step/sec: 508.741 INFO:tensorflow:global_step/sec: 508.741 INFO:tensorflow:loss = 0.2128592, step = 3100 (0.197 sec) INFO:tensorflow:loss = 0.2128592, step = 3100 (0.197 sec) INFO:tensorflow:global_step/sec: 519.319 INFO:tensorflow:global_step/sec: 519.319 INFO:tensorflow:loss = 0.40954083, step = 3200 (0.192 sec) INFO:tensorflow:loss = 0.40954083, step = 3200 (0.192 sec) INFO:tensorflow:global_step/sec: 468.989 INFO:tensorflow:global_step/sec: 468.989 INFO:tensorflow:loss = 0.34270883, step = 3300 (0.213 sec) INFO:tensorflow:loss = 0.34270883, step = 3300 (0.213 sec) INFO:tensorflow:global_step/sec: 479.856 INFO:tensorflow:global_step/sec: 479.856 INFO:tensorflow:loss = 0.26599607, step = 3400 (0.209 sec) INFO:tensorflow:loss = 0.26599607, step = 3400 (0.209 sec) INFO:tensorflow:global_step/sec: 495.76 INFO:tensorflow:global_step/sec: 495.76 INFO:tensorflow:loss = 0.21713805, step = 3500 (0.201 sec) INFO:tensorflow:loss = 0.21713805, step = 3500 (0.201 sec) INFO:tensorflow:global_step/sec: 440.282 INFO:tensorflow:global_step/sec: 440.282 INFO:tensorflow:loss = 0.22268976, step = 3600 (0.228 sec) INFO:tensorflow:loss = 0.22268976, step = 3600 (0.228 sec) INFO:tensorflow:global_step/sec: 495.629 INFO:tensorflow:global_step/sec: 495.629 INFO:tensorflow:loss = 0.28974164, step = 3700 (0.201 sec) INFO:tensorflow:loss = 0.28974164, step = 3700 (0.201 sec) INFO:tensorflow:global_step/sec: 468.695 INFO:tensorflow:global_step/sec: 468.695 INFO:tensorflow:loss = 0.37919793, step = 3800 (0.214 sec) INFO:tensorflow:loss = 0.37919793, step = 3800 (0.214 sec) INFO:tensorflow:global_step/sec: 529.005 INFO:tensorflow:global_step/sec: 529.005 INFO:tensorflow:loss = 0.23738712, step = 3900 (0.189 sec) INFO:tensorflow:loss = 0.23738712, step = 3900 (0.189 sec) INFO:tensorflow:global_step/sec: 494.809 INFO:tensorflow:global_step/sec: 494.809 INFO:tensorflow:loss = 0.29650036, step = 4000 (0.204 sec) INFO:tensorflow:loss = 0.29650036, step = 4000 (0.204 sec) INFO:tensorflow:global_step/sec: 525.629 INFO:tensorflow:global_step/sec: 525.629 INFO:tensorflow:loss = 0.20826155, step = 4100 (0.188 sec) INFO:tensorflow:loss = 0.20826155, step = 4100 (0.188 sec) INFO:tensorflow:global_step/sec: 509.573 INFO:tensorflow:global_step/sec: 509.573 INFO:tensorflow:loss = 0.26417816, step = 4200 (0.196 sec) INFO:tensorflow:loss = 0.26417816, step = 4200 (0.196 sec) INFO:tensorflow:global_step/sec: 472.845 INFO:tensorflow:global_step/sec: 472.845 INFO:tensorflow:loss = 0.31241363, step = 4300 (0.212 sec) INFO:tensorflow:loss = 0.31241363, step = 4300 (0.212 sec) INFO:tensorflow:global_step/sec: 510.868 INFO:tensorflow:global_step/sec: 510.868 INFO:tensorflow:loss = 0.32773697, step = 4400 (0.195 sec) INFO:tensorflow:loss = 0.32773697, step = 4400 (0.195 sec) INFO:tensorflow:global_step/sec: 492.967 INFO:tensorflow:global_step/sec: 492.967 INFO:tensorflow:loss = 0.28609803, step = 4500 (0.203 sec) INFO:tensorflow:loss = 0.28609803, step = 4500 (0.203 sec) INFO:tensorflow:global_step/sec: 507.394 INFO:tensorflow:global_step/sec: 507.394 INFO:tensorflow:loss = 0.32142323, step = 4600 (0.197 sec) INFO:tensorflow:loss = 0.32142323, step = 4600 (0.197 sec) INFO:tensorflow:global_step/sec: 475.176 INFO:tensorflow:global_step/sec: 475.176 INFO:tensorflow:loss = 0.14882785, step = 4700 (0.211 sec) INFO:tensorflow:loss = 0.14882785, step = 4700 (0.211 sec) INFO:tensorflow:global_step/sec: 503.718 INFO:tensorflow:global_step/sec: 503.718 INFO:tensorflow:loss = 0.312344, step = 4800 (0.198 sec) INFO:tensorflow:loss = 0.312344, step = 4800 (0.198 sec) INFO:tensorflow:global_step/sec: 497.659 INFO:tensorflow:global_step/sec: 497.659 INFO:tensorflow:loss = 0.37370217, step = 4900 (0.201 sec) INFO:tensorflow:loss = 0.37370217, step = 4900 (0.201 sec) INFO:tensorflow:global_step/sec: 477.736 INFO:tensorflow:global_step/sec: 477.736 INFO:tensorflow:loss = 0.2663591, step = 5000 (0.209 sec) INFO:tensorflow:loss = 0.2663591, step = 5000 (0.209 sec) INFO:tensorflow:global_step/sec: 496.559 INFO:tensorflow:global_step/sec: 496.559 INFO:tensorflow:loss = 0.34745598, step = 5100 (0.202 sec) INFO:tensorflow:loss = 0.34745598, step = 5100 (0.202 sec) INFO:tensorflow:global_step/sec: 475.989 INFO:tensorflow:global_step/sec: 475.989 INFO:tensorflow:loss = 0.21809828, step = 5200 (0.210 sec) INFO:tensorflow:loss = 0.21809828, step = 5200 (0.210 sec) INFO:tensorflow:global_step/sec: 474.464 INFO:tensorflow:global_step/sec: 474.464 INFO:tensorflow:loss = 0.2474105, step = 5300 (0.211 sec) INFO:tensorflow:loss = 0.2474105, step = 5300 (0.211 sec) INFO:tensorflow:global_step/sec: 488.774 INFO:tensorflow:global_step/sec: 488.774 INFO:tensorflow:loss = 0.1611641, step = 5400 (0.204 sec) INFO:tensorflow:loss = 0.1611641, step = 5400 (0.204 sec) INFO:tensorflow:global_step/sec: 504.942 INFO:tensorflow:global_step/sec: 504.942 INFO:tensorflow:loss = 0.2306528, step = 5500 (0.198 sec) INFO:tensorflow:loss = 0.2306528, step = 5500 (0.198 sec) INFO:tensorflow:global_step/sec: 514.058 INFO:tensorflow:global_step/sec: 514.058 INFO:tensorflow:loss = 0.20716992, step = 5600 (0.195 sec) INFO:tensorflow:loss = 0.20716992, step = 5600 (0.195 sec) INFO:tensorflow:global_step/sec: 458.899 INFO:tensorflow:global_step/sec: 458.899 INFO:tensorflow:loss = 0.16730343, step = 5700 (0.217 sec) INFO:tensorflow:loss = 0.16730343, step = 5700 (0.217 sec) INFO:tensorflow:global_step/sec: 495.197 INFO:tensorflow:global_step/sec: 495.197 INFO:tensorflow:loss = 0.2906361, step = 5800 (0.202 sec) INFO:tensorflow:loss = 0.2906361, step = 5800 (0.202 sec) INFO:tensorflow:global_step/sec: 482.244 INFO:tensorflow:global_step/sec: 482.244 INFO:tensorflow:loss = 0.24669808, step = 5900 (0.207 sec) INFO:tensorflow:loss = 0.24669808, step = 5900 (0.207 sec) INFO:tensorflow:global_step/sec: 484.946 INFO:tensorflow:global_step/sec: 484.946 INFO:tensorflow:loss = 0.26403594, step = 6000 (0.207 sec) INFO:tensorflow:loss = 0.26403594, step = 6000 (0.207 sec) INFO:tensorflow:global_step/sec: 486.74 INFO:tensorflow:global_step/sec: 486.74 INFO:tensorflow:loss = 0.19804293, step = 6100 (0.206 sec) INFO:tensorflow:loss = 0.19804293, step = 6100 (0.206 sec) INFO:tensorflow:global_step/sec: 436.727 INFO:tensorflow:global_step/sec: 436.727 INFO:tensorflow:loss = 0.25344175, step = 6200 (0.229 sec) INFO:tensorflow:loss = 0.25344175, step = 6200 (0.229 sec) INFO:tensorflow:global_step/sec: 428.73 INFO:tensorflow:global_step/sec: 428.73 INFO:tensorflow:loss = 0.2430937, step = 6300 (0.232 sec) INFO:tensorflow:loss = 0.2430937, step = 6300 (0.232 sec) INFO:tensorflow:global_step/sec: 449.706 INFO:tensorflow:global_step/sec: 449.706 INFO:tensorflow:loss = 0.2842306, step = 6400 (0.222 sec) INFO:tensorflow:loss = 0.2842306, step = 6400 (0.222 sec) INFO:tensorflow:global_step/sec: 440.873 INFO:tensorflow:global_step/sec: 440.873 INFO:tensorflow:loss = 0.2641199, step = 6500 (0.227 sec) INFO:tensorflow:loss = 0.2641199, step = 6500 (0.227 sec) INFO:tensorflow:global_step/sec: 424.092 INFO:tensorflow:global_step/sec: 424.092 INFO:tensorflow:loss = 0.19028814, step = 6600 (0.237 sec) INFO:tensorflow:loss = 0.19028814, step = 6600 (0.237 sec) INFO:tensorflow:global_step/sec: 450.352 INFO:tensorflow:global_step/sec: 450.352 INFO:tensorflow:loss = 0.24667627, step = 6700 (0.221 sec) INFO:tensorflow:loss = 0.24667627, step = 6700 (0.221 sec) INFO:tensorflow:global_step/sec: 462.774 INFO:tensorflow:global_step/sec: 462.774 INFO:tensorflow:loss = 0.40046322, step = 6800 (0.216 sec) INFO:tensorflow:loss = 0.40046322, step = 6800 (0.216 sec) INFO:tensorflow:global_step/sec: 460.854 INFO:tensorflow:global_step/sec: 460.854 INFO:tensorflow:loss = 0.14105138, step = 6900 (0.217 sec) INFO:tensorflow:loss = 0.14105138, step = 6900 (0.217 sec) INFO:tensorflow:Requesting early stopping at global step 6916 INFO:tensorflow:Requesting early stopping at global step 6916 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 6917... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 6917... INFO:tensorflow:Saving checkpoints for 6917 into /tmp/tmpocmc6_bo/model.ckpt. INFO:tensorflow:Saving checkpoints for 6917 into /tmp/tmpocmc6_bo/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 6917... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 6917... INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2021-09-22T20:07:35 INFO:tensorflow:Starting evaluation at 2021-09-22T20:07:35 INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpocmc6_bo/model.ckpt-6917 INFO:tensorflow:Restoring parameters from /tmp/tmpocmc6_bo/model.ckpt-6917 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [10/100] INFO:tensorflow:Evaluation [10/100] INFO:tensorflow:Evaluation [20/100] INFO:tensorflow:Evaluation [20/100] INFO:tensorflow:Evaluation [30/100] INFO:tensorflow:Evaluation [30/100] INFO:tensorflow:Evaluation [40/100] INFO:tensorflow:Evaluation [40/100] INFO:tensorflow:Evaluation [50/100] INFO:tensorflow:Evaluation [50/100] INFO:tensorflow:Evaluation [60/100] INFO:tensorflow:Evaluation [60/100] INFO:tensorflow:Evaluation [70/100] INFO:tensorflow:Evaluation [70/100] INFO:tensorflow:Inference Time : 0.79520s INFO:tensorflow:Inference Time : 0.79520s INFO:tensorflow:Finished evaluation at 2021-09-22-20:07:36 INFO:tensorflow:Finished evaluation at 2021-09-22-20:07:36 INFO:tensorflow:Saving dict for global step 6917: global_step = 6917, loss = 0.227278 INFO:tensorflow:Saving dict for global step 6917: global_step = 6917, loss = 0.227278 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 6917: /tmp/tmpocmc6_bo/model.ckpt-6917 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 6917: /tmp/tmpocmc6_bo/model.ckpt-6917 INFO:tensorflow:Loss for final step: 0.13882703. INFO:tensorflow:Loss for final step: 0.13882703. ({'loss': 0.227278, 'global_step': 6917}, [])
TensorFlow 2 : arrêt anticipé avec un rappel intégré et Model.fit
Préparez le jeu de données MNIST et un modèle Keras simple :
(ds_train, ds_test), ds_info = tfds.load(
'mnist',
split=['train', 'test'],
shuffle_files=True,
as_supervised=True,
with_info=True,
)
ds_train = ds_train.map(
normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_train = ds_train.batch(128)
ds_test = ds_test.map(
normalize_img, num_parallel_calls=tf.data.AUTOTUNE)
ds_test = ds_test.batch(128)
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10)
])
model.compile(
optimizer=tf.keras.optimizers.Adam(0.005),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],
)
Dans TensorFlow 2, lorsque vous utilisez le Keras Model.fit
(ou Model.evaluate
) intégré, vous pouvez configurer un arrêt anticipé en transmettant un rappel tf.keras.callbacks.EarlyStopping
au paramètre callbacks
de Model.fit
.
Le rappel EarlyStopping
surveille une métrique spécifiée par l'utilisateur et met fin à la formation lorsqu'elle cesse de s'améliorer. (Consultez Formation et évaluation avec les méthodes intégrées ou la documentation de l' API pour plus d'informations.)
Vous trouverez ci-dessous un exemple de rappel d'arrêt précoce qui surveille la perte et arrête l'entraînement après que le nombre d'époques qui ne montrent aucune amélioration est défini sur 3
( patience
):
callback = tf.keras.callbacks.EarlyStopping(monitor='loss', patience=3)
# Only around 25 epochs are run during training, instead of 100.
history = model.fit(
ds_train,
epochs=100,
validation_data=ds_test,
callbacks=[callback]
)
len(history.history['loss'])
Epoch 1/100 469/469 [==============================] - 5s 8ms/step - loss: 0.2371 - sparse_categorical_accuracy: 0.9293 - val_loss: 0.1334 - val_sparse_categorical_accuracy: 0.9611 Epoch 2/100 469/469 [==============================] - 1s 3ms/step - loss: 0.1028 - sparse_categorical_accuracy: 0.9686 - val_loss: 0.1062 - val_sparse_categorical_accuracy: 0.9667 Epoch 3/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0703 - sparse_categorical_accuracy: 0.9783 - val_loss: 0.0993 - val_sparse_categorical_accuracy: 0.9707 Epoch 4/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0552 - sparse_categorical_accuracy: 0.9822 - val_loss: 0.1040 - val_sparse_categorical_accuracy: 0.9680 Epoch 5/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0420 - sparse_categorical_accuracy: 0.9865 - val_loss: 0.1033 - val_sparse_categorical_accuracy: 0.9716 Epoch 6/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0387 - sparse_categorical_accuracy: 0.9871 - val_loss: 0.1167 - val_sparse_categorical_accuracy: 0.9691 Epoch 7/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0321 - sparse_categorical_accuracy: 0.9893 - val_loss: 0.1396 - val_sparse_categorical_accuracy: 0.9672 Epoch 8/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0285 - sparse_categorical_accuracy: 0.9902 - val_loss: 0.1397 - val_sparse_categorical_accuracy: 0.9671 Epoch 9/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0263 - sparse_categorical_accuracy: 0.9915 - val_loss: 0.1296 - val_sparse_categorical_accuracy: 0.9715 Epoch 10/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0250 - sparse_categorical_accuracy: 0.9915 - val_loss: 0.1440 - val_sparse_categorical_accuracy: 0.9715 Epoch 11/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0274 - sparse_categorical_accuracy: 0.9910 - val_loss: 0.1439 - val_sparse_categorical_accuracy: 0.9710 Epoch 12/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0241 - sparse_categorical_accuracy: 0.9923 - val_loss: 0.1429 - val_sparse_categorical_accuracy: 0.9718 Epoch 13/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0205 - sparse_categorical_accuracy: 0.9929 - val_loss: 0.1451 - val_sparse_categorical_accuracy: 0.9753 Epoch 14/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0196 - sparse_categorical_accuracy: 0.9936 - val_loss: 0.1562 - val_sparse_categorical_accuracy: 0.9750 Epoch 15/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0214 - sparse_categorical_accuracy: 0.9930 - val_loss: 0.1531 - val_sparse_categorical_accuracy: 0.9748 Epoch 16/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0178 - sparse_categorical_accuracy: 0.9941 - val_loss: 0.1712 - val_sparse_categorical_accuracy: 0.9731 Epoch 17/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0177 - sparse_categorical_accuracy: 0.9947 - val_loss: 0.1715 - val_sparse_categorical_accuracy: 0.9755 Epoch 18/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0141 - sparse_categorical_accuracy: 0.9952 - val_loss: 0.1826 - val_sparse_categorical_accuracy: 0.9730 Epoch 19/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0188 - sparse_categorical_accuracy: 0.9942 - val_loss: 0.1919 - val_sparse_categorical_accuracy: 0.9732 Epoch 20/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0190 - sparse_categorical_accuracy: 0.9944 - val_loss: 0.1703 - val_sparse_categorical_accuracy: 0.9777 Epoch 21/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0153 - sparse_categorical_accuracy: 0.9951 - val_loss: 0.1725 - val_sparse_categorical_accuracy: 0.9764 21
TensorFlow 2 : arrêt anticipé avec un rappel personnalisé et Model.fit
Vous pouvez également implémenter un callback d'arrêt précoce personnalisé , qui peut également être passé au paramètre callbacks
de Model.fit
(ou Model.evaluate
).
Dans cet exemple, le processus de formation est arrêté une fois que self.model.stop_training
est défini sur True
:
class LimitTrainingTime(tf.keras.callbacks.Callback):
def __init__(self, max_time_s):
super().__init__()
self.max_time_s = max_time_s
self.start_time = None
def on_train_begin(self, logs):
self.start_time = time.time()
def on_train_batch_end(self, batch, logs):
now = time.time()
if now - self.start_time > self.max_time_s:
self.model.stop_training = True
# Limit the training time to 30 seconds.
callback = LimitTrainingTime(30)
history = model.fit(
ds_train,
epochs=100,
validation_data=ds_test,
callbacks=[callback]
)
len(history.history['loss'])
Epoch 1/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0131 - sparse_categorical_accuracy: 0.9961 - val_loss: 0.1911 - val_sparse_categorical_accuracy: 0.9749 Epoch 2/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0133 - sparse_categorical_accuracy: 0.9958 - val_loss: 0.1999 - val_sparse_categorical_accuracy: 0.9755 Epoch 3/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0153 - sparse_categorical_accuracy: 0.9952 - val_loss: 0.1927 - val_sparse_categorical_accuracy: 0.9770 Epoch 4/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0145 - sparse_categorical_accuracy: 0.9957 - val_loss: 0.2279 - val_sparse_categorical_accuracy: 0.9753 Epoch 5/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0141 - sparse_categorical_accuracy: 0.9959 - val_loss: 0.2272 - val_sparse_categorical_accuracy: 0.9755 Epoch 6/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0132 - sparse_categorical_accuracy: 0.9962 - val_loss: 0.2352 - val_sparse_categorical_accuracy: 0.9747 Epoch 7/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0144 - sparse_categorical_accuracy: 0.9960 - val_loss: 0.2421 - val_sparse_categorical_accuracy: 0.9734 Epoch 8/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0128 - sparse_categorical_accuracy: 0.9964 - val_loss: 0.2260 - val_sparse_categorical_accuracy: 0.9785 Epoch 9/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0129 - sparse_categorical_accuracy: 0.9965 - val_loss: 0.2472 - val_sparse_categorical_accuracy: 0.9752 Epoch 10/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0143 - sparse_categorical_accuracy: 0.9961 - val_loss: 0.2166 - val_sparse_categorical_accuracy: 0.9768 Epoch 11/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0145 - sparse_categorical_accuracy: 0.9963 - val_loss: 0.2289 - val_sparse_categorical_accuracy: 0.9781 Epoch 12/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0119 - sparse_categorical_accuracy: 0.9968 - val_loss: 0.2310 - val_sparse_categorical_accuracy: 0.9777 Epoch 13/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0144 - sparse_categorical_accuracy: 0.9966 - val_loss: 0.2617 - val_sparse_categorical_accuracy: 0.9781 Epoch 14/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0119 - sparse_categorical_accuracy: 0.9972 - val_loss: 0.3007 - val_sparse_categorical_accuracy: 0.9754 Epoch 15/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0150 - sparse_categorical_accuracy: 0.9966 - val_loss: 0.3014 - val_sparse_categorical_accuracy: 0.9767 Epoch 16/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0143 - sparse_categorical_accuracy: 0.9963 - val_loss: 0.2815 - val_sparse_categorical_accuracy: 0.9750 Epoch 17/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0129 - sparse_categorical_accuracy: 0.9967 - val_loss: 0.2606 - val_sparse_categorical_accuracy: 0.9765 Epoch 18/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0103 - sparse_categorical_accuracy: 0.9975 - val_loss: 0.2602 - val_sparse_categorical_accuracy: 0.9777 Epoch 19/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0098 - sparse_categorical_accuracy: 0.9979 - val_loss: 0.2594 - val_sparse_categorical_accuracy: 0.9780 Epoch 20/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0156 - sparse_categorical_accuracy: 0.9965 - val_loss: 0.3008 - val_sparse_categorical_accuracy: 0.9755 Epoch 21/100 469/469 [==============================] - 1s 3ms/step - loss: 0.0110 - sparse_categorical_accuracy: 0.9974 - val_loss: 0.2662 - val_sparse_categorical_accuracy: 0.9765 Epoch 22/100 469/469 [==============================] - 1s 1ms/step - loss: 0.0083 - sparse_categorical_accuracy: 0.9978 - val_loss: 0.2587 - val_sparse_categorical_accuracy: 0.9797 22
TensorFlow 2 : arrêt anticipé avec une boucle d'entraînement personnalisée
Dans TensorFlow 2, vous pouvez implémenter un arrêt anticipé dans une boucle d'entraînement personnalisée si vous n'effectuez pas d'entraînement et d'évaluation avec les méthodes Keras intégrées .
Commencez par utiliser les API Keras pour définir un autre modèle simple, un optimiseur, une fonction de perte et des métriques :
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10)
])
optimizer = tf.keras.optimizers.Adam(0.005)
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
train_acc_metric = tf.keras.metrics.SparseCategoricalAccuracy()
train_loss_metric = tf.keras.metrics.SparseCategoricalCrossentropy()
val_acc_metric = tf.keras.metrics.SparseCategoricalAccuracy()
val_loss_metric = tf.keras.metrics.SparseCategoricalCrossentropy()
Définissez les fonctions de mise à jour des paramètres avec tf.GradientTape et le décorateur @tf.function
pour un speedup :
@tf.function
def train_step(x, y):
with tf.GradientTape() as tape:
logits = model(x, training=True)
loss_value = loss_fn(y, logits)
grads = tape.gradient(loss_value, model.trainable_weights)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
train_acc_metric.update_state(y, logits)
train_loss_metric.update_state(y, logits)
return loss_value
@tf.function
def test_step(x, y):
logits = model(x, training=False)
val_acc_metric.update_state(y, logits)
val_loss_metric.update_state(y, logits)
Ensuite, écrivez une boucle de formation personnalisée, dans laquelle vous pouvez implémenter manuellement votre règle d'arrêt anticipé.
L'exemple ci-dessous montre comment arrêter l'entraînement lorsque la perte de validation ne s'améliore pas sur un certain nombre d'époques :
epochs = 100
patience = 5
wait = 0
best = 0
for epoch in range(epochs):
print("\nStart of epoch %d" % (epoch,))
start_time = time.time()
for step, (x_batch_train, y_batch_train) in enumerate(ds_train):
loss_value = train_step(x_batch_train, y_batch_train)
if step % 200 == 0:
print("Training loss at step %d: %.4f" % (step, loss_value.numpy()))
print("Seen so far: %s samples" % ((step + 1) * 128))
train_acc = train_acc_metric.result()
train_loss = train_loss_metric.result()
train_acc_metric.reset_states()
train_loss_metric.reset_states()
print("Training acc over epoch: %.4f" % (train_acc.numpy()))
for x_batch_val, y_batch_val in ds_test:
test_step(x_batch_val, y_batch_val)
val_acc = val_acc_metric.result()
val_loss = val_loss_metric.result()
val_acc_metric.reset_states()
val_loss_metric.reset_states()
print("Validation acc: %.4f" % (float(val_acc),))
print("Time taken: %.2fs" % (time.time() - start_time))
# The early stopping strategy: stop the training if `val_loss` does not
# decrease over a certain number of epochs.
wait += 1
if val_loss > best:
best = val_loss
wait = 0
if wait >= patience:
break
Start of epoch 0 Training loss at step 0: 2.3073 Seen so far: 128 samples Training loss at step 200: 0.2164 Seen so far: 25728 samples Training loss at step 400: 0.2186 Seen so far: 51328 samples Training acc over epoch: 0.9321 Validation acc: 0.9644 Time taken: 1.73s Start of epoch 1 Training loss at step 0: 0.0733 Seen so far: 128 samples Training loss at step 200: 0.1581 Seen so far: 25728 samples Training loss at step 400: 0.1625 Seen so far: 51328 samples Training acc over epoch: 0.9704 Validation acc: 0.9681 Time taken: 1.23s Start of epoch 2 Training loss at step 0: 0.0501 Seen so far: 128 samples Training loss at step 200: 0.1389 Seen so far: 25728 samples Training loss at step 400: 0.1495 Seen so far: 51328 samples Training acc over epoch: 0.9779 Validation acc: 0.9703 Time taken: 1.17s Start of epoch 3 Training loss at step 0: 0.0513 Seen so far: 128 samples Training loss at step 200: 0.0638 Seen so far: 25728 samples Training loss at step 400: 0.0930 Seen so far: 51328 samples Training acc over epoch: 0.9830 Validation acc: 0.9719 Time taken: 1.20s Start of epoch 4 Training loss at step 0: 0.0251 Seen so far: 128 samples Training loss at step 200: 0.0482 Seen so far: 25728 samples Training loss at step 400: 0.0872 Seen so far: 51328 samples Training acc over epoch: 0.9849 Validation acc: 0.9672 Time taken: 1.18s Start of epoch 5 Training loss at step 0: 0.0417 Seen so far: 128 samples Training loss at step 200: 0.0302 Seen so far: 25728 samples Training loss at step 400: 0.0362 Seen so far: 51328 samples Training acc over epoch: 0.9878 Validation acc: 0.9703 Time taken: 1.21s
Prochaines étapes
- En savoir plus sur l'API de rappel d'arrêt anticipé intégrée de Keras dans la documentation de l' API .
- Apprenez à écrire des rappels Keras personnalisés , y compris l'arrêt précoce à une perte minimale .
- En savoir plus sur la formation et l'évaluation avec les méthodes intégrées de Keras .
- Explorez les techniques de régularisation courantes dans le didacticiel Overfit and underfit qui utilise le rappel
EarlyStopping
.