Komponent inżynierii funkcji TensorFlow Extended (TFX)
Ten przykład colab notebook zapewnia nieco bardziej zaawansowany przykład jak TensorFlow Transform ( tf.Transform
) mogą być stosowane do danych przetwarzania wstępnego stosując dokładnie ten sam kod zarówno szkolenia modelu i obsługujących wnioski w produkcji.
TensorFlow Transform to biblioteka do wstępnego przetwarzania danych wejściowych dla TensorFlow, w tym tworzenia funkcji wymagających pełnego przejścia przez treningowy zestaw danych. Na przykład za pomocą TensorFlow Transform możesz:
- Normalizuj wartość wejściową, używając średniej i odchylenia standardowego
- Konwertuj łańcuchy na liczby całkowite, generując słownik dla wszystkich wartości wejściowych
- Konwertuj liczby zmiennoprzecinkowe na liczby całkowite, przypisując je do segmentów na podstawie obserwowanego rozkładu danych
TensorFlow ma wbudowaną obsługę manipulacji na pojedynczym przykładzie lub partii przykładów. tf.Transform
rozszerza te możliwości, aby wspierać pełne przechodzi nad całym zbiorze treningowym.
Wyjście tf.Transform
jest eksportowana w postaci wykresu TensorFlow, które można wykorzystać zarówno do treningu i serwowania. Używanie tego samego wykresu zarówno do trenowania, jak i obsługi może zapobiec przekrzywieniu, ponieważ te same przekształcenia są stosowane na obu etapach.
Co robimy w tym przykładzie
W tym przykładzie będziemy obrabiania powszechnie używanych danych spisowych zestawu danych zawierającej i szkolenia model zrobić klasyfikację. Po drodze będziemy przekształcenia danych za pomocą tf.Transform
.
Ulepsz Pip
Aby uniknąć aktualizacji Pip w systemie uruchomionym lokalnie, upewnij się, że działamy w Colab. Systemy lokalne można oczywiście aktualizować oddzielnie.
try:
import colab
!pip install --upgrade pip
except:
pass
Zainstaluj TensorFlow Transform
pip install tensorflow-transform
Sprawdzanie Pythona, importy i globalne
Najpierw upewnimy się, że używamy Pythona 3, a następnie zainstalujemy i zaimportujemy potrzebne nam rzeczy.
import sys
# Confirm that we're using Python 3
assert sys.version_info.major == 3, 'Oops, not running Python 3. Use Runtime > Change runtime type'
import math
import os
import pprint
import tensorflow as tf
print('TF: {}'.format(tf.__version__))
import apache_beam as beam
print('Beam: {}'.format(beam.__version__))
import tensorflow_transform as tft
import tensorflow_transform.beam as tft_beam
print('Transform: {}'.format(tft.__version__))
from tfx_bsl.public import tfxio
from tfx_bsl.coders.example_coder import RecordBatchToExamples
!wget https://storage.googleapis.com/artifacts.tfx-oss-public.appspot.com/datasets/census/adult.data
!wget https://storage.googleapis.com/artifacts.tfx-oss-public.appspot.com/datasets/census/adult.test
train = './adult.data'
test = './adult.test'
TF: 2.4.4 Beam: 2.34.0 Transform: 0.29.0 --2021-12-04 10:43:05-- https://storage.googleapis.com/artifacts.tfx-oss-public.appspot.com/datasets/census/adult.data Resolving storage.googleapis.com (storage.googleapis.com)... 142.251.8.128, 74.125.204.128, 64.233.189.128, ... Connecting to storage.googleapis.com (storage.googleapis.com)|142.251.8.128|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 3974305 (3.8M) [application/octet-stream] Saving to: ‘adult.data’ adult.data 100%[===================>] 3.79M --.-KB/s in 0.03s 2021-12-04 10:43:05 (135 MB/s) - ‘adult.data’ saved [3974305/3974305] --2021-12-04 10:43:05-- https://storage.googleapis.com/artifacts.tfx-oss-public.appspot.com/datasets/census/adult.test Resolving storage.googleapis.com (storage.googleapis.com)... 142.250.157.128, 108.177.125.128, 64.233.189.128, ... Connecting to storage.googleapis.com (storage.googleapis.com)|142.250.157.128|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 2003153 (1.9M) [application/octet-stream] Saving to: ‘adult.test’ adult.test 100%[===================>] 1.91M --.-KB/s in 0.01s 2021-12-04 10:43:05 (177 MB/s) - ‘adult.test’ saved [2003153/2003153]
Nazwij nasze kolumny
Stworzymy kilka przydatnych list do odwoływania się do kolumn w naszym zbiorze danych.
CATEGORICAL_FEATURE_KEYS = [
'workclass',
'education',
'marital-status',
'occupation',
'relationship',
'race',
'sex',
'native-country',
]
NUMERIC_FEATURE_KEYS = [
'age',
'capital-gain',
'capital-loss',
'hours-per-week',
]
OPTIONAL_NUMERIC_FEATURE_KEYS = [
'education-num',
]
ORDERED_CSV_COLUMNS = [
'age', 'workclass', 'fnlwgt', 'education', 'education-num',
'marital-status', 'occupation', 'relationship', 'race', 'sex',
'capital-gain', 'capital-loss', 'hours-per-week', 'native-country', 'label'
]
LABEL_KEY = 'label'
Zdefiniuj nasze funkcje i schemat
Zdefiniujmy schemat na podstawie typów kolumn w naszych danych wejściowych. Pomoże to między innymi w prawidłowym ich zaimportowaniu.
RAW_DATA_FEATURE_SPEC = dict(
[(name, tf.io.FixedLenFeature([], tf.string))
for name in CATEGORICAL_FEATURE_KEYS] +
[(name, tf.io.FixedLenFeature([], tf.float32))
for name in NUMERIC_FEATURE_KEYS] +
[(name, tf.io.VarLenFeature(tf.float32))
for name in OPTIONAL_NUMERIC_FEATURE_KEYS] +
[(LABEL_KEY, tf.io.FixedLenFeature([], tf.string))]
)
SCHEMA = tft.tf_metadata.dataset_metadata.DatasetMetadata(
tft.tf_metadata.schema_utils.schema_from_feature_spec(RAW_DATA_FEATURE_SPEC)).schema
Ustawianie hiperparametrów i podstawowe sprzątanie
Stałe i hiperparametry używane do treningu. Rozmiar zasobnika obejmuje wszystkie wymienione kategorie w opisie zbioru danych, a także jedną dodatkową dla „?” co reprezentuje nieznane.
testing = os.getenv("WEB_TEST_BROWSER", False)
NUM_OOV_BUCKETS = 1
if testing:
TRAIN_NUM_EPOCHS = 1
NUM_TRAIN_INSTANCES = 1
TRAIN_BATCH_SIZE = 1
NUM_TEST_INSTANCES = 1
else:
TRAIN_NUM_EPOCHS = 16
NUM_TRAIN_INSTANCES = 32561
TRAIN_BATCH_SIZE = 128
NUM_TEST_INSTANCES = 16281
# Names of temp files
TRANSFORMED_TRAIN_DATA_FILEBASE = 'train_transformed'
TRANSFORMED_TEST_DATA_FILEBASE = 'test_transformed'
EXPORTED_MODEL_DIR = 'exported_model_dir'
Przerób z tf.Transform
Tworzenie tf.Transform
preprocessing_fn
Funkcja przerób jest najważniejsza koncepcja tf.Transform. Funkcja przetwarzania wstępnego to miejsce, w którym naprawdę zachodzi transformacja zestawu danych. Przyjmuje i zwraca słownika tensorów którym napinacz oznacza Tensor
lub SparseTensor
. Istnieją dwie główne grupy wywołań API, które zazwyczaj tworzą serce funkcji przetwarzania wstępnego:
- TensorFlow ops: Każda funkcja, która przyjmuje i powraca tensory, co zazwyczaj oznacza, ops TensorFlow. Dodają one operacje TensorFlow do wykresu, który przekształca nieprzetworzone dane w dane przekształcone po jednym wektorze cech naraz. Będą one działać na każdym przykładzie, zarówno podczas treningu, jak i podania.
- TensorFlow Transform Analizatory: Każdy z analizatorów świadczonych przez tf.Transform. Analizatory również akceptują i zwracają tensory, ale w przeciwieństwie do operacji TensorFlow uruchamiają się tylko raz, podczas treningu i zazwyczaj wykonują pełny przebieg przez cały treningowy zestaw danych. Tworzą tensora stałych , które są dodawane do wykresu. Na przykład,
tft.min
oblicza minimum tensora nad zbiorze treningowym. tf.Transform zapewnia stały zestaw analizatorów, który zostanie rozszerzony w przyszłych wersjach.
def preprocessing_fn(inputs):
"""Preprocess input columns into transformed columns."""
# Since we are modifying some features and leaving others unchanged, we
# start by setting `outputs` to a copy of `inputs.
outputs = inputs.copy()
# Scale numeric columns to have range [0, 1].
for key in NUMERIC_FEATURE_KEYS:
outputs[key] = tft.scale_to_0_1(inputs[key])
for key in OPTIONAL_NUMERIC_FEATURE_KEYS:
# This is a SparseTensor because it is optional. Here we fill in a default
# value when it is missing.
sparse = tf.sparse.SparseTensor(inputs[key].indices, inputs[key].values,
[inputs[key].dense_shape[0], 1])
dense = tf.sparse.to_dense(sp_input=sparse, default_value=0.)
# Reshaping from a batch of vectors of size 1 to a batch to scalars.
dense = tf.squeeze(dense, axis=1)
outputs[key] = tft.scale_to_0_1(dense)
# For all categorical columns except the label column, we generate a
# vocabulary but do not modify the feature. This vocabulary is instead
# used in the trainer, by means of a feature column, to convert the feature
# from a string to an integer id.
for key in CATEGORICAL_FEATURE_KEYS:
outputs[key] = tft.compute_and_apply_vocabulary(
tf.strings.strip(inputs[key]),
num_oov_buckets=NUM_OOV_BUCKETS,
vocab_filename=key)
# For the label column we provide the mapping from string to index.
table_keys = ['>50K', '<=50K']
with tf.init_scope():
initializer = tf.lookup.KeyValueTensorInitializer(
keys=table_keys,
values=tf.cast(tf.range(len(table_keys)), tf.int64),
key_dtype=tf.string,
value_dtype=tf.int64)
table = tf.lookup.StaticHashTable(initializer, default_value=-1)
# Remove trailing periods for test data when the data is read with tf.data.
label_str = tf.strings.regex_replace(inputs[LABEL_KEY], r'\.', '')
label_str = tf.strings.strip(label_str)
data_labels = table.lookup(label_str)
transformed_label = tf.one_hot(
indices=data_labels, depth=len(table_keys), on_value=1.0, off_value=0.0)
outputs[LABEL_KEY] = tf.reshape(transformed_label, [-1, len(table_keys)])
return outputs
Przekształć dane
Teraz jesteśmy gotowi do rozpoczęcia przekształcania naszych danych w potok Apache Beam.
- Wczytaj dane za pomocą czytnika CSV
- Przekształć go za pomocą potoku przetwarzania wstępnego, który skaluje dane liczbowe i konwertuje dane kategorialne z ciągów na indeksy wartości int64, tworząc słownik dla każdej kategorii
- Wypisać wynik jako
TFRecord
zExample
PROTOS, których będziemy używać na później model szkolenia
def transform_data(train_data_file, test_data_file, working_dir):
"""Transform the data and write out as a TFRecord of Example protos.
Read in the data using the CSV reader, and transform it using a
preprocessing pipeline that scales numeric data and converts categorical data
from strings to int64 values indices, by creating a vocabulary for each
category.
Args:
train_data_file: File containing training data
test_data_file: File containing test data
working_dir: Directory to write transformed data and metadata to
"""
# The "with" block will create a pipeline, and run that pipeline at the exit
# of the block.
with beam.Pipeline() as pipeline:
with tft_beam.Context(temp_dir=tempfile.mkdtemp()):
# Create a TFXIO to read the census data with the schema. To do this we
# need to list all columns in order since the schema doesn't specify the
# order of columns in the csv.
# We first read CSV files and use BeamRecordCsvTFXIO whose .BeamSource()
# accepts a PCollection[bytes] because we need to patch the records first
# (see "FixCommasTrainData" below). Otherwise, tfxio.CsvTFXIO can be used
# to both read the CSV files and parse them to TFT inputs:
# csv_tfxio = tfxio.CsvTFXIO(...)
# raw_data = (pipeline | 'ToRecordBatches' >> csv_tfxio.BeamSource())
csv_tfxio = tfxio.BeamRecordCsvTFXIO(
physical_format='text',
column_names=ORDERED_CSV_COLUMNS,
schema=SCHEMA)
# Read in raw data and convert using CSV TFXIO. Note that we apply
# some Beam transformations here, which will not be encoded in the TF
# graph since we don't do the from within tf.Transform's methods
# (AnalyzeDataset, TransformDataset etc.). These transformations are just
# to get data into a format that the CSV TFXIO can read, in particular
# removing spaces after commas.
raw_data = (
pipeline
| 'ReadTrainData' >> beam.io.ReadFromText(
train_data_file, coder=beam.coders.BytesCoder())
| 'FixCommasTrainData' >> beam.Map(
lambda line: line.replace(b', ', b','))
| 'DecodeTrainData' >> csv_tfxio.BeamSource())
# Combine data and schema into a dataset tuple. Note that we already used
# the schema to read the CSV data, but we also need it to interpret
# raw_data.
raw_dataset = (raw_data, csv_tfxio.TensorAdapterConfig())
# The TFXIO output format is chosen for improved performance.
transformed_dataset, transform_fn = (
raw_dataset | tft_beam.AnalyzeAndTransformDataset(
preprocessing_fn, output_record_batches=True))
# Transformed metadata is not necessary for encoding.
transformed_data, _ = transformed_dataset
# Extract transformed RecordBatches, encode and write them to the given
# directory.
_ = (
transformed_data
| 'EncodeTrainData' >>
beam.FlatMapTuple(lambda batch, _: RecordBatchToExamples(batch))
| 'WriteTrainData' >> beam.io.WriteToTFRecord(
os.path.join(working_dir, TRANSFORMED_TRAIN_DATA_FILEBASE)))
# Now apply transform function to test data. In this case we remove the
# trailing period at the end of each line, and also ignore the header line
# that is present in the test data file.
raw_test_data = (
pipeline
| 'ReadTestData' >> beam.io.ReadFromText(
test_data_file, skip_header_lines=1,
coder=beam.coders.BytesCoder())
| 'FixCommasTestData' >> beam.Map(
lambda line: line.replace(b', ', b','))
| 'RemoveTrailingPeriodsTestData' >> beam.Map(lambda line: line[:-1])
| 'DecodeTestData' >> csv_tfxio.BeamSource())
raw_test_dataset = (raw_test_data, csv_tfxio.TensorAdapterConfig())
# The TFXIO output format is chosen for improved performance.
transformed_test_dataset = (
(raw_test_dataset, transform_fn)
| tft_beam.TransformDataset(output_record_batches=True))
# Transformed metadata is not necessary for encoding.
transformed_test_data, _ = transformed_test_dataset
# Extract transformed RecordBatches, encode and write them to the given
# directory.
_ = (
transformed_test_data
| 'EncodeTestData' >>
beam.FlatMapTuple(lambda batch, _: RecordBatchToExamples(batch))
| 'WriteTestData' >> beam.io.WriteToTFRecord(
os.path.join(working_dir, TRANSFORMED_TEST_DATA_FILEBASE)))
# Will write a SavedModel and metadata to working_dir, which can then
# be read by the tft.TFTransformOutput class.
_ = (
transform_fn
| 'WriteTransformFn' >> tft_beam.WriteTransformFn(working_dir))
Wykorzystanie naszych wstępnie przetworzonych danych do trenowania modelu za pomocą tf.keras
Aby pokazać, jak tf.Transform
pozwala nam użyć tego samego kodu zarówno szkolenia i służąc, a tym samym zapobiec pochylać, jedziemy do trenowania modelu. Aby wytrenować nasz model i przygotować nasz wyszkolony model do produkcji, musimy utworzyć funkcje wejściowe. Główna różnica między naszą uczącą funkcją wejściową a obsługującą funkcją wejściową polega na tym, że dane uczące zawierają etykiety, a dane produkcyjne nie. Argumenty i zwroty są również nieco inne.
Utwórz funkcję wejściową do treningu
def _make_training_input_fn(tf_transform_output, transformed_examples,
batch_size):
"""An input function reading from transformed data, converting to model input.
Args:
tf_transform_output: Wrapper around output of tf.Transform.
transformed_examples: Base filename of examples.
batch_size: Batch size.
Returns:
The input data for training or eval, in the form of k.
"""
def input_fn():
return tf.data.experimental.make_batched_features_dataset(
file_pattern=transformed_examples,
batch_size=batch_size,
features=tf_transform_output.transformed_feature_spec(),
reader=tf.data.TFRecordDataset,
label_key=LABEL_KEY,
shuffle=True).prefetch(tf.data.experimental.AUTOTUNE)
return input_fn
Utwórz funkcję wejściową do serwowania
Utwórzmy funkcję wejściową, której moglibyśmy użyć w środowisku produkcyjnym, i przygotujmy nasz wytrenowany model do obsługi.
def _make_serving_input_fn(tf_transform_output, raw_examples, batch_size):
"""An input function reading from raw data, converting to model input.
Args:
tf_transform_output: Wrapper around output of tf.Transform.
raw_examples: Base filename of examples.
batch_size: Batch size.
Returns:
The input data for training or eval, in the form of k.
"""
def get_ordered_raw_data_dtypes():
result = []
for col in ORDERED_CSV_COLUMNS:
if col not in RAW_DATA_FEATURE_SPEC:
result.append(0.0)
continue
spec = RAW_DATA_FEATURE_SPEC[col]
if isinstance(spec, tf.io.FixedLenFeature):
result.append(spec.dtype)
else:
result.append(0.0)
return result
def input_fn():
dataset = tf.data.experimental.make_csv_dataset(
file_pattern=raw_examples,
batch_size=batch_size,
column_names=ORDERED_CSV_COLUMNS,
column_defaults=get_ordered_raw_data_dtypes(),
prefetch_buffer_size=0,
ignore_errors=True)
tft_layer = tf_transform_output.transform_features_layer()
def transform_dataset(data):
raw_features = {}
for key, val in data.items():
if key not in RAW_DATA_FEATURE_SPEC:
continue
if isinstance(RAW_DATA_FEATURE_SPEC[key], tf.io.VarLenFeature):
raw_features[key] = tf.RaggedTensor.from_tensor(
tf.expand_dims(val, -1)).to_sparse()
continue
raw_features[key] = val
transformed_features = tft_layer(raw_features)
data_labels = transformed_features.pop(LABEL_KEY)
return (transformed_features, data_labels)
return dataset.map(
transform_dataset,
num_parallel_calls=tf.data.experimental.AUTOTUNE).prefetch(
tf.data.experimental.AUTOTUNE)
return input_fn
Trenuj, oceniaj i eksportuj nasz model
def export_serving_model(tf_transform_output, model, output_dir):
"""Exports a keras model for serving.
Args:
tf_transform_output: Wrapper around output of tf.Transform.
model: A keras model to export for serving.
output_dir: A directory where the model will be exported to.
"""
# The layer has to be saved to the model for keras tracking purpases.
model.tft_layer = tf_transform_output.transform_features_layer()
@tf.function
def serve_tf_examples_fn(serialized_tf_examples):
"""Serving tf.function model wrapper."""
feature_spec = RAW_DATA_FEATURE_SPEC.copy()
feature_spec.pop(LABEL_KEY)
parsed_features = tf.io.parse_example(serialized_tf_examples, feature_spec)
transformed_features = model.tft_layer(parsed_features)
outputs = model(transformed_features)
classes_names = tf.constant([['0', '1']])
classes = tf.tile(classes_names, [tf.shape(outputs)[0], 1])
return {'classes': classes, 'scores': outputs}
concrete_serving_fn = serve_tf_examples_fn.get_concrete_function(
tf.TensorSpec(shape=[None], dtype=tf.string, name='inputs'))
signatures = {'serving_default': concrete_serving_fn}
# This is required in order to make this model servable with model_server.
versioned_output_dir = os.path.join(output_dir, '1')
model.save(versioned_output_dir, save_format='tf', signatures=signatures)
def train_and_evaluate(working_dir,
num_train_instances=NUM_TRAIN_INSTANCES,
num_test_instances=NUM_TEST_INSTANCES):
"""Train the model on training data and evaluate on test data.
Args:
working_dir: The location of the Transform output.
num_train_instances: Number of instances in train set
num_test_instances: Number of instances in test set
Returns:
The results from the estimator's 'evaluate' method
"""
train_data_path_pattern = os.path.join(working_dir,
TRANSFORMED_TRAIN_DATA_FILEBASE + '*')
eval_data_path_pattern = os.path.join(working_dir,
TRANSFORMED_TEST_DATA_FILEBASE + '*')
tf_transform_output = tft.TFTransformOutput(working_dir)
train_input_fn = _make_training_input_fn(
tf_transform_output, train_data_path_pattern, batch_size=TRAIN_BATCH_SIZE)
train_dataset = train_input_fn()
# Evaluate model on test dataset.
eval_input_fn = _make_training_input_fn(
tf_transform_output, eval_data_path_pattern, batch_size=TRAIN_BATCH_SIZE)
validation_dataset = eval_input_fn()
feature_spec = tf_transform_output.transformed_feature_spec().copy()
feature_spec.pop(LABEL_KEY)
inputs = {}
for key, spec in feature_spec.items():
if isinstance(spec, tf.io.VarLenFeature):
inputs[key] = tf.keras.layers.Input(
shape=[None], name=key, dtype=spec.dtype, sparse=True)
elif isinstance(spec, tf.io.FixedLenFeature):
inputs[key] = tf.keras.layers.Input(
shape=spec.shape, name=key, dtype=spec.dtype)
else:
raise ValueError('Spec type is not supported: ', key, spec)
encoded_inputs = {}
for key in inputs:
feature = tf.expand_dims(inputs[key], -1)
if key in CATEGORICAL_FEATURE_KEYS:
num_buckets = tf_transform_output.num_buckets_for_transformed_feature(key)
encoding_layer = (
tf.keras.layers.experimental.preprocessing.CategoryEncoding(
max_tokens=num_buckets, output_mode='binary', sparse=False))
encoded_inputs[key] = encoding_layer(feature)
else:
encoded_inputs[key] = feature
stacked_inputs = tf.concat(tf.nest.flatten(encoded_inputs), axis=1)
output = tf.keras.layers.Dense(100, activation='relu')(stacked_inputs)
output = tf.keras.layers.Dense(70, activation='relu')(output)
output = tf.keras.layers.Dense(50, activation='relu')(output)
output = tf.keras.layers.Dense(20, activation='relu')(output)
output = tf.keras.layers.Dense(2, activation='sigmoid')(output)
model = tf.keras.Model(inputs=inputs, outputs=output)
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
pprint.pprint(model.summary())
model.fit(train_dataset, validation_data=validation_dataset,
epochs=TRAIN_NUM_EPOCHS,
steps_per_epoch=math.ceil(num_train_instances / TRAIN_BATCH_SIZE),
validation_steps=math.ceil(num_test_instances / TRAIN_BATCH_SIZE))
# Export the model.
exported_model_dir = os.path.join(working_dir, EXPORTED_MODEL_DIR)
export_serving_model(tf_transform_output, model, exported_model_dir)
metrics_values = model.evaluate(validation_dataset, steps=num_test_instances)
metrics_labels = model.metrics_names
return {l: v for l, v in zip(metrics_labels, metrics_values)}
Poskładać wszystko do kupy
Stworzyliśmy wszystko, czego potrzebujemy, aby wstępnie przetworzyć nasze dane ze spisu, wytrenować model i przygotować go do wyświetlenia. Do tej pory po prostu wszystko przygotowywaliśmy. Czas zacząć biegać!
import tempfile
temp = os.path.join(tempfile.gettempdir(), 'keras')
transform_data(train, test, temp)
results = train_and_evaluate(temp)
pprint.pprint(results)
WARNING:apache_beam.runners.interactive.interactive_environment:Dependencies required for Interactive Beam PCollection visualization are not available, please use: `pip install apache-beam[interactive]` to install necessary dependencies to enable all data visualization features. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_transform/tf_utils.py:266: Tensor.experimental_ref (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Use ref() instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow_transform/tf_utils.py:266: Tensor.experimental_ref (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Use ref() instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/saved_model/signature_def_utils_impl.py:201: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info. 2021-12-04 10:43:07.088016: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:43:07.089022: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/saved_model/signature_def_utils_impl.py:201: build_tensor_info (from tensorflow.python.saved_model.utils_impl) is deprecated and will be removed in a future version. Instructions for updating: This function will only be available through the v1 compatibility library as tf.compat.v1.saved_model.utils.build_tensor_info or tf.compat.v1.saved_model.build_tensor_info. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:No assets to write. INFO:tensorflow:No assets to write. WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' INFO:tensorflow:SavedModel written to: /tmp/tmpwtmrrrxa/tftransform_tmp/3dfb612abc894c0ab0ae6895d85b5084/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tmpwtmrrrxa/tftransform_tmp/3dfb612abc894c0ab0ae6895d85b5084/saved_model.pb INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:No assets to write. INFO:tensorflow:No assets to write. WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' INFO:tensorflow:SavedModel written to: /tmp/tmpwtmrrrxa/tftransform_tmp/c76371e6c4104068b035f1ba7ac0c160/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tmpwtmrrrxa/tftransform_tmp/c76371e6c4104068b035f1ba7ac0c160/saved_model.pb WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2021-12-04 10:43:12.129285: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:43:12.129350: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets written to: /tmp/tmpwtmrrrxa/tftransform_tmp/a447c39aff834eaa8b3df63abd6a0d29/assets INFO:tensorflow:Assets written to: /tmp/tmpwtmrrrxa/tftransform_tmp/a447c39aff834eaa8b3df63abd6a0d29/assets INFO:tensorflow:SavedModel written to: /tmp/tmpwtmrrrxa/tftransform_tmp/a447c39aff834eaa8b3df63abd6a0d29/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tmpwtmrrrxa/tftransform_tmp/a447c39aff834eaa8b3df63abd6a0d29/saved_model.pb WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2021-12-04 10:43:17.368791: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:43:17.368851: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:apache_beam.io.tfrecordio:Couldn't find python-snappy so the implementation of _TFRecordUtil._masked_crc32c is not as fast as it could be. WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" 2021-12-04 10:43:18.716754: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:43:18.716809: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore Model: "model" __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== education (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ marital-status (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ native-country (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ occupation (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ race (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ relationship (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ sex (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ workclass (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ age (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ capital-gain (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ capital-loss (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ tf.expand_dims_3 (TFOpLambda) (None, 1) 0 education[0][0] __________________________________________________________________________________________________ education-num (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ hours-per-week (InputLayer) [(None,)] 0 __________________________________________________________________________________________________ tf.expand_dims_6 (TFOpLambda) (None, 1) 0 marital-status[0][0] __________________________________________________________________________________________________ tf.expand_dims_7 (TFOpLambda) (None, 1) 0 native-country[0][0] __________________________________________________________________________________________________ tf.expand_dims_8 (TFOpLambda) (None, 1) 0 occupation[0][0] __________________________________________________________________________________________________ tf.expand_dims_9 (TFOpLambda) (None, 1) 0 race[0][0] __________________________________________________________________________________________________ tf.expand_dims_10 (TFOpLambda) (None, 1) 0 relationship[0][0] __________________________________________________________________________________________________ tf.expand_dims_11 (TFOpLambda) (None, 1) 0 sex[0][0] __________________________________________________________________________________________________ tf.expand_dims_12 (TFOpLambda) (None, 1) 0 workclass[0][0] __________________________________________________________________________________________________ tf.expand_dims (TFOpLambda) (None, 1) 0 age[0][0] __________________________________________________________________________________________________ tf.expand_dims_1 (TFOpLambda) (None, 1) 0 capital-gain[0][0] __________________________________________________________________________________________________ tf.expand_dims_2 (TFOpLambda) (None, 1) 0 capital-loss[0][0] __________________________________________________________________________________________________ category_encoding (CategoryEnco (None, 17) 0 tf.expand_dims_3[0][0] __________________________________________________________________________________________________ tf.expand_dims_4 (TFOpLambda) (None, 1) 0 education-num[0][0] __________________________________________________________________________________________________ tf.expand_dims_5 (TFOpLambda) (None, 1) 0 hours-per-week[0][0] __________________________________________________________________________________________________ category_encoding_1 (CategoryEn (None, 8) 0 tf.expand_dims_6[0][0] __________________________________________________________________________________________________ category_encoding_2 (CategoryEn (None, 43) 0 tf.expand_dims_7[0][0] __________________________________________________________________________________________________ category_encoding_3 (CategoryEn (None, 16) 0 tf.expand_dims_8[0][0] __________________________________________________________________________________________________ category_encoding_4 (CategoryEn (None, 6) 0 tf.expand_dims_9[0][0] __________________________________________________________________________________________________ category_encoding_5 (CategoryEn (None, 7) 0 tf.expand_dims_10[0][0] __________________________________________________________________________________________________ category_encoding_6 (CategoryEn (None, 3) 0 tf.expand_dims_11[0][0] __________________________________________________________________________________________________ category_encoding_7 (CategoryEn (None, 10) 0 tf.expand_dims_12[0][0] __________________________________________________________________________________________________ tf.concat (TFOpLambda) (None, 115) 0 tf.expand_dims[0][0] tf.expand_dims_1[0][0] tf.expand_dims_2[0][0] category_encoding[0][0] tf.expand_dims_4[0][0] tf.expand_dims_5[0][0] category_encoding_1[0][0] category_encoding_2[0][0] category_encoding_3[0][0] category_encoding_4[0][0] category_encoding_5[0][0] category_encoding_6[0][0] category_encoding_7[0][0] __________________________________________________________________________________________________ dense (Dense) (None, 100) 11600 tf.concat[0][0] __________________________________________________________________________________________________ dense_1 (Dense) (None, 70) 7070 dense[0][0] __________________________________________________________________________________________________ dense_2 (Dense) (None, 50) 3550 dense_1[0][0] __________________________________________________________________________________________________ dense_3 (Dense) (None, 20) 1020 dense_2[0][0] __________________________________________________________________________________________________ dense_4 (Dense) (None, 2) 42 dense_3[0][0] ================================================================================================== Total params: 23,282 Trainable params: 23,282 Non-trainable params: 0 __________________________________________________________________________________________________ None Epoch 1/16 255/255 [==============================] - 2s 5ms/step - loss: 0.4575 - accuracy: 0.7892 - val_loss: 0.3393 - val_accuracy: 0.8425 Epoch 2/16 255/255 [==============================] - 1s 3ms/step - loss: 0.3390 - accuracy: 0.8420 - val_loss: 0.3367 - val_accuracy: 0.8442 Epoch 3/16 255/255 [==============================] - 1s 3ms/step - loss: 0.3278 - accuracy: 0.8478 - val_loss: 0.3256 - val_accuracy: 0.8490 Epoch 4/16 255/255 [==============================] - 1s 3ms/step - loss: 0.3182 - accuracy: 0.8494 - val_loss: 0.3246 - val_accuracy: 0.8481 Epoch 5/16 255/255 [==============================] - 1s 3ms/step - loss: 0.3133 - accuracy: 0.8527 - val_loss: 0.3204 - val_accuracy: 0.8484 Epoch 6/16 255/255 [==============================] - 1s 3ms/step - loss: 0.3054 - accuracy: 0.8566 - val_loss: 0.3232 - val_accuracy: 0.8480 Epoch 7/16 255/255 [==============================] - 1s 4ms/step - loss: 0.3024 - accuracy: 0.8568 - val_loss: 0.3248 - val_accuracy: 0.8488 Epoch 8/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2970 - accuracy: 0.8595 - val_loss: 0.3310 - val_accuracy: 0.8470 Epoch 9/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2932 - accuracy: 0.8619 - val_loss: 0.3277 - val_accuracy: 0.8465 Epoch 10/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2946 - accuracy: 0.8617 - val_loss: 0.3292 - val_accuracy: 0.8495 Epoch 11/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2914 - accuracy: 0.8606 - val_loss: 0.3334 - val_accuracy: 0.8511 Epoch 12/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2864 - accuracy: 0.8631 - val_loss: 0.3328 - val_accuracy: 0.8490 Epoch 13/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2811 - accuracy: 0.8671 - val_loss: 0.3386 - val_accuracy: 0.8503 Epoch 14/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2738 - accuracy: 0.8720 - val_loss: 0.3397 - val_accuracy: 0.8483 Epoch 15/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2709 - accuracy: 0.8745 - val_loss: 0.3429 - val_accuracy: 0.8491 Epoch 16/16 255/255 [==============================] - 1s 3ms/step - loss: 0.2705 - accuracy: 0.8724 - val_loss: 0.3467 - val_accuracy: 0.8491 INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2021-12-04 10:43:37.584301: W tensorflow/python/util/util.cc:348] Sets are not currently considered sequences, but this may change in the future, so consider avoiding using them. INFO:tensorflow:Assets written to: /tmp/keras/exported_model_dir/1/assets INFO:tensorflow:Assets written to: /tmp/keras/exported_model_dir/1/assets 16281/16281 [==============================] - 21s 1ms/step - loss: 0.3470 - accuracy: 0.8491 {'accuracy': 0.8490878939628601, 'loss': 0.34699547290802}
(Opcjonalnie) Wykorzystanie naszych wstępnie przetworzonych danych do trenowania modelu za pomocą tf.estimator
Jeśli wolisz używać modelu Estimator zamiast modelu Keras, kod w tej sekcji pokazuje, jak to zrobić.
Utwórz funkcję wejściową do treningu
def _make_training_input_fn(tf_transform_output, transformed_examples,
batch_size):
"""Creates an input function reading from transformed data.
Args:
tf_transform_output: Wrapper around output of tf.Transform.
transformed_examples: Base filename of examples.
batch_size: Batch size.
Returns:
The input function for training or eval.
"""
def input_fn():
"""Input function for training and eval."""
dataset = tf.data.experimental.make_batched_features_dataset(
file_pattern=transformed_examples,
batch_size=batch_size,
features=tf_transform_output.transformed_feature_spec(),
reader=tf.data.TFRecordDataset,
shuffle=True)
transformed_features = tf.compat.v1.data.make_one_shot_iterator(
dataset).get_next()
# Extract features and label from the transformed tensors.
transformed_labels = tf.where(
tf.equal(transformed_features.pop(LABEL_KEY), 1))
return transformed_features, transformed_labels[:,1]
return input_fn
Utwórz funkcję wejściową do serwowania
Utwórzmy funkcję wejściową, której moglibyśmy użyć w środowisku produkcyjnym, i przygotujmy nasz wytrenowany model do obsługi.
def _make_serving_input_fn(tf_transform_output):
"""Creates an input function reading from raw data.
Args:
tf_transform_output: Wrapper around output of tf.Transform.
Returns:
The serving input function.
"""
raw_feature_spec = RAW_DATA_FEATURE_SPEC.copy()
# Remove label since it is not available during serving.
raw_feature_spec.pop(LABEL_KEY)
def serving_input_fn():
"""Input function for serving."""
# Get raw features by generating the basic serving input_fn and calling it.
# Here we generate an input_fn that expects a parsed Example proto to be fed
# to the model at serving time. See also
# tf.estimator.export.build_raw_serving_input_receiver_fn.
raw_input_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(
raw_feature_spec, default_batch_size=None)
serving_input_receiver = raw_input_fn()
# Apply the transform function that was used to generate the materialized
# data.
raw_features = serving_input_receiver.features
transformed_features = tf_transform_output.transform_raw_features(
raw_features)
return tf.estimator.export.ServingInputReceiver(
transformed_features, serving_input_receiver.receiver_tensors)
return serving_input_fn
Zapakuj nasze dane wejściowe w FeatureColumns
Nasz model będzie oczekiwał naszych danych w TensorFlow FeatureColumns.
def get_feature_columns(tf_transform_output):
"""Returns the FeatureColumns for the model.
Args:
tf_transform_output: A `TFTransformOutput` object.
Returns:
A list of FeatureColumns.
"""
# Wrap scalars as real valued columns.
real_valued_columns = [tf.feature_column.numeric_column(key, shape=())
for key in NUMERIC_FEATURE_KEYS]
# Wrap categorical columns.
one_hot_columns = [
tf.feature_column.indicator_column(
tf.feature_column.categorical_column_with_identity(
key=key,
num_buckets=(NUM_OOV_BUCKETS +
tf_transform_output.vocabulary_size_by_name(
vocab_filename=key))))
for key in CATEGORICAL_FEATURE_KEYS]
return real_valued_columns + one_hot_columns
Trenuj, oceniaj i eksportuj nasz model
def train_and_evaluate(working_dir, num_train_instances=NUM_TRAIN_INSTANCES,
num_test_instances=NUM_TEST_INSTANCES):
"""Train the model on training data and evaluate on test data.
Args:
working_dir: Directory to read transformed data and metadata from and to
write exported model to.
num_train_instances: Number of instances in train set
num_test_instances: Number of instances in test set
Returns:
The results from the estimator's 'evaluate' method
"""
tf_transform_output = tft.TFTransformOutput(working_dir)
run_config = tf.estimator.RunConfig()
estimator = tf.estimator.LinearClassifier(
feature_columns=get_feature_columns(tf_transform_output),
config=run_config,
loss_reduction=tf.losses.Reduction.SUM)
# Fit the model using the default optimizer.
train_input_fn = _make_training_input_fn(
tf_transform_output,
os.path.join(working_dir, TRANSFORMED_TRAIN_DATA_FILEBASE + '*'),
batch_size=TRAIN_BATCH_SIZE)
estimator.train(
input_fn=train_input_fn,
max_steps=TRAIN_NUM_EPOCHS * num_train_instances / TRAIN_BATCH_SIZE)
# Evaluate model on test dataset.
eval_input_fn = _make_training_input_fn(
tf_transform_output,
os.path.join(working_dir, TRANSFORMED_TEST_DATA_FILEBASE + '*'),
batch_size=1)
# Export the model.
serving_input_fn = _make_serving_input_fn(tf_transform_output)
exported_model_dir = os.path.join(working_dir, EXPORTED_MODEL_DIR)
estimator.export_saved_model(exported_model_dir, serving_input_fn)
return estimator.evaluate(input_fn=eval_input_fn, steps=num_test_instances)
Poskładać wszystko do kupy
Stworzyliśmy wszystko, czego potrzebujemy, aby wstępnie przetworzyć nasze dane ze spisu, wytrenować model i przygotować go do wyświetlenia. Do tej pory po prostu wszystko przygotowywaliśmy. Czas zacząć biegać!
import tempfile
temp = os.path.join(tempfile.gettempdir(), 'estimator')
transform_data(train, test, temp)
results = train_and_evaluate(temp)
pprint.pprint(results)
WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:No assets to write. INFO:tensorflow:No assets to write. WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' INFO:tensorflow:SavedModel written to: /tmp/tmpi7o66bl8/tftransform_tmp/a7f3726df5bf498ca24bd528eebca9e9/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tmpi7o66bl8/tftransform_tmp/a7f3726df5bf498ca24bd528eebca9e9/saved_model.pb INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:No assets to write. INFO:tensorflow:No assets to write. WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' WARNING:tensorflow:Issue encountered when serializing tft_mapper_use. Type is unsupported, or the types of the items don't match field type in CollectionDef. Note this is a warning and probably safe to ignore. 'Counter' object has no attribute 'name' INFO:tensorflow:SavedModel written to: /tmp/tmpi7o66bl8/tftransform_tmp/3466a3517ec243a39102fa6ad6e5fec2/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tmpi7o66bl8/tftransform_tmp/3466a3517ec243a39102fa6ad6e5fec2/saved_model.pb WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:tensorflow:Tensorflow version (2.4.4) found. Note that Tensorflow Transform support for TF 2.0 is currently in beta, and features such as tf.function may not work as intended. WARNING:root:Make sure that locally built Python SDK docker image has Python 3.7 interpreter. INFO:tensorflow:Saver not created because there are no variables in the graph to restore 2021-12-04 10:44:05.733070: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:44:05.733123: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets written to: /tmp/tmpi7o66bl8/tftransform_tmp/96186aa415404f0884cb3766b270b9b2/assets INFO:tensorflow:Assets written to: /tmp/tmpi7o66bl8/tftransform_tmp/96186aa415404f0884cb3766b270b9b2/assets INFO:tensorflow:SavedModel written to: /tmp/tmpi7o66bl8/tftransform_tmp/96186aa415404f0884cb3766b270b9b2/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/tmpi7o66bl8/tftransform_tmp/96186aa415404f0884cb3766b270b9b2/saved_model.pb WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" 2021-12-04 10:44:10.983401: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:44:10.983461: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" 2021-12-04 10:44:12.469671: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:44:12.469756: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpwufx88ji WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpwufx88ji INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpwufx88ji', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpwufx88ji', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/keras/engine/base_layer_v1.py:1727: UserWarning: `layer.add_variable` is deprecated and will be removed in a future version. Please use `layer.add_weight` method instead. warnings.warn('`layer.add_variable` is deprecated and ' WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/keras/optimizer_v2/ftrl.py:134: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/keras/optimizer_v2/ftrl.py:134: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. 2021-12-04 10:44:15.191355: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:44:15.191419: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpwufx88ji/model.ckpt. INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpwufx88ji/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... INFO:tensorflow:loss = 88.72284, step = 0 INFO:tensorflow:loss = 88.72284, step = 0 INFO:tensorflow:global_step/sec: 432.87 INFO:tensorflow:global_step/sec: 432.87 INFO:tensorflow:loss = 33.484627, step = 100 (0.233 sec) INFO:tensorflow:loss = 33.484627, step = 100 (0.233 sec) INFO:tensorflow:global_step/sec: 764.774 INFO:tensorflow:global_step/sec: 764.774 INFO:tensorflow:loss = 42.72283, step = 200 (0.130 sec) INFO:tensorflow:loss = 42.72283, step = 200 (0.130 sec) INFO:tensorflow:global_step/sec: 763.549 INFO:tensorflow:global_step/sec: 763.549 INFO:tensorflow:loss = 55.91174, step = 300 (0.131 sec) INFO:tensorflow:loss = 55.91174, step = 300 (0.131 sec) INFO:tensorflow:global_step/sec: 755.175 INFO:tensorflow:global_step/sec: 755.175 INFO:tensorflow:loss = 39.204643, step = 400 (0.133 sec) INFO:tensorflow:loss = 39.204643, step = 400 (0.133 sec) INFO:tensorflow:global_step/sec: 792.262 INFO:tensorflow:global_step/sec: 792.262 INFO:tensorflow:loss = 41.268295, step = 500 (0.126 sec) INFO:tensorflow:loss = 41.268295, step = 500 (0.126 sec) INFO:tensorflow:global_step/sec: 743.725 INFO:tensorflow:global_step/sec: 743.725 INFO:tensorflow:loss = 51.267006, step = 600 (0.135 sec) INFO:tensorflow:loss = 51.267006, step = 600 (0.135 sec) INFO:tensorflow:global_step/sec: 806.716 INFO:tensorflow:global_step/sec: 806.716 INFO:tensorflow:loss = 42.03744, step = 700 (0.124 sec) INFO:tensorflow:loss = 42.03744, step = 700 (0.124 sec) INFO:tensorflow:global_step/sec: 763.135 INFO:tensorflow:global_step/sec: 763.135 INFO:tensorflow:loss = 42.66994, step = 800 (0.131 sec) INFO:tensorflow:loss = 42.66994, step = 800 (0.131 sec) INFO:tensorflow:global_step/sec: 779.496 INFO:tensorflow:global_step/sec: 779.496 INFO:tensorflow:loss = 48.643982, step = 900 (0.129 sec) INFO:tensorflow:loss = 48.643982, step = 900 (0.129 sec) INFO:tensorflow:global_step/sec: 787.431 INFO:tensorflow:global_step/sec: 787.431 INFO:tensorflow:loss = 41.668102, step = 1000 (0.127 sec) INFO:tensorflow:loss = 41.668102, step = 1000 (0.127 sec) INFO:tensorflow:global_step/sec: 737.697 INFO:tensorflow:global_step/sec: 737.697 INFO:tensorflow:loss = 40.340927, step = 1100 (0.135 sec) INFO:tensorflow:loss = 40.340927, step = 1100 (0.135 sec) INFO:tensorflow:global_step/sec: 755.647 INFO:tensorflow:global_step/sec: 755.647 INFO:tensorflow:loss = 31.146494, step = 1200 (0.133 sec) INFO:tensorflow:loss = 31.146494, step = 1200 (0.133 sec) INFO:tensorflow:global_step/sec: 785.653 INFO:tensorflow:global_step/sec: 785.653 INFO:tensorflow:loss = 30.96864, step = 1300 (0.127 sec) INFO:tensorflow:loss = 30.96864, step = 1300 (0.127 sec) INFO:tensorflow:global_step/sec: 759.461 INFO:tensorflow:global_step/sec: 759.461 INFO:tensorflow:loss = 38.621964, step = 1400 (0.132 sec) INFO:tensorflow:loss = 38.621964, step = 1400 (0.132 sec) INFO:tensorflow:global_step/sec: 777.328 INFO:tensorflow:global_step/sec: 777.328 INFO:tensorflow:loss = 44.518555, step = 1500 (0.129 sec) INFO:tensorflow:loss = 44.518555, step = 1500 (0.129 sec) INFO:tensorflow:global_step/sec: 741.005 INFO:tensorflow:global_step/sec: 741.005 INFO:tensorflow:loss = 45.997204, step = 1600 (0.135 sec) INFO:tensorflow:loss = 45.997204, step = 1600 (0.135 sec) INFO:tensorflow:global_step/sec: 734.846 INFO:tensorflow:global_step/sec: 734.846 INFO:tensorflow:loss = 50.39132, step = 1700 (0.136 sec) INFO:tensorflow:loss = 50.39132, step = 1700 (0.136 sec) INFO:tensorflow:global_step/sec: 752.826 INFO:tensorflow:global_step/sec: 752.826 INFO:tensorflow:loss = 45.41472, step = 1800 (0.133 sec) INFO:tensorflow:loss = 45.41472, step = 1800 (0.133 sec) INFO:tensorflow:global_step/sec: 757.018 INFO:tensorflow:global_step/sec: 757.018 INFO:tensorflow:loss = 46.133186, step = 1900 (0.132 sec) INFO:tensorflow:loss = 46.133186, step = 1900 (0.132 sec) INFO:tensorflow:global_step/sec: 700.757 INFO:tensorflow:global_step/sec: 700.757 INFO:tensorflow:loss = 34.684982, step = 2000 (0.143 sec) INFO:tensorflow:loss = 34.684982, step = 2000 (0.143 sec) INFO:tensorflow:global_step/sec: 741.709 INFO:tensorflow:global_step/sec: 741.709 INFO:tensorflow:loss = 39.637863, step = 2100 (0.135 sec) INFO:tensorflow:loss = 39.637863, step = 2100 (0.135 sec) INFO:tensorflow:global_step/sec: 772.066 INFO:tensorflow:global_step/sec: 772.066 INFO:tensorflow:loss = 45.70813, step = 2200 (0.129 sec) INFO:tensorflow:loss = 45.70813, step = 2200 (0.129 sec) INFO:tensorflow:global_step/sec: 776.263 INFO:tensorflow:global_step/sec: 776.263 INFO:tensorflow:loss = 39.104668, step = 2300 (0.129 sec) INFO:tensorflow:loss = 39.104668, step = 2300 (0.129 sec) INFO:tensorflow:global_step/sec: 768.016 INFO:tensorflow:global_step/sec: 768.016 INFO:tensorflow:loss = 36.262817, step = 2400 (0.130 sec) INFO:tensorflow:loss = 36.262817, step = 2400 (0.130 sec) INFO:tensorflow:global_step/sec: 754.04 INFO:tensorflow:global_step/sec: 754.04 INFO:tensorflow:loss = 43.80282, step = 2500 (0.132 sec) INFO:tensorflow:loss = 43.80282, step = 2500 (0.132 sec) INFO:tensorflow:global_step/sec: 742.917 INFO:tensorflow:global_step/sec: 742.917 INFO:tensorflow:loss = 48.113125, step = 2600 (0.135 sec) INFO:tensorflow:loss = 48.113125, step = 2600 (0.135 sec) INFO:tensorflow:global_step/sec: 753.394 INFO:tensorflow:global_step/sec: 753.394 INFO:tensorflow:loss = 43.442005, step = 2700 (0.133 sec) INFO:tensorflow:loss = 43.442005, step = 2700 (0.133 sec) INFO:tensorflow:global_step/sec: 768.985 INFO:tensorflow:global_step/sec: 768.985 INFO:tensorflow:loss = 34.593086, step = 2800 (0.130 sec) INFO:tensorflow:loss = 34.593086, step = 2800 (0.130 sec) INFO:tensorflow:global_step/sec: 756.393 INFO:tensorflow:global_step/sec: 756.393 INFO:tensorflow:loss = 38.085594, step = 2900 (0.132 sec) INFO:tensorflow:loss = 38.085594, step = 2900 (0.132 sec) INFO:tensorflow:global_step/sec: 792.717 INFO:tensorflow:global_step/sec: 792.717 INFO:tensorflow:loss = 42.41484, step = 3000 (0.126 sec) INFO:tensorflow:loss = 42.41484, step = 3000 (0.126 sec) INFO:tensorflow:global_step/sec: 763.25 INFO:tensorflow:global_step/sec: 763.25 INFO:tensorflow:loss = 42.457626, step = 3100 (0.131 sec) INFO:tensorflow:loss = 42.457626, step = 3100 (0.131 sec) INFO:tensorflow:global_step/sec: 747.998 INFO:tensorflow:global_step/sec: 747.998 INFO:tensorflow:loss = 52.64791, step = 3200 (0.134 sec) INFO:tensorflow:loss = 52.64791, step = 3200 (0.134 sec) INFO:tensorflow:global_step/sec: 733.804 INFO:tensorflow:global_step/sec: 733.804 INFO:tensorflow:loss = 36.78949, step = 3300 (0.136 sec) INFO:tensorflow:loss = 36.78949, step = 3300 (0.136 sec) INFO:tensorflow:global_step/sec: 747.473 INFO:tensorflow:global_step/sec: 747.473 INFO:tensorflow:loss = 43.02353, step = 3400 (0.134 sec) INFO:tensorflow:loss = 43.02353, step = 3400 (0.134 sec) INFO:tensorflow:global_step/sec: 766.967 INFO:tensorflow:global_step/sec: 766.967 INFO:tensorflow:loss = 42.971584, step = 3500 (0.131 sec) INFO:tensorflow:loss = 42.971584, step = 3500 (0.131 sec) INFO:tensorflow:global_step/sec: 759.238 INFO:tensorflow:global_step/sec: 759.238 INFO:tensorflow:loss = 31.898714, step = 3600 (0.133 sec) INFO:tensorflow:loss = 31.898714, step = 3600 (0.133 sec) INFO:tensorflow:global_step/sec: 770.209 INFO:tensorflow:global_step/sec: 770.209 INFO:tensorflow:loss = 43.47151, step = 3700 (0.128 sec) INFO:tensorflow:loss = 43.47151, step = 3700 (0.128 sec) INFO:tensorflow:global_step/sec: 750.127 INFO:tensorflow:global_step/sec: 750.127 INFO:tensorflow:loss = 40.073875, step = 3800 (0.133 sec) INFO:tensorflow:loss = 40.073875, step = 3800 (0.133 sec) INFO:tensorflow:global_step/sec: 731.607 INFO:tensorflow:global_step/sec: 731.607 INFO:tensorflow:loss = 33.494003, step = 3900 (0.137 sec) INFO:tensorflow:loss = 33.494003, step = 3900 (0.137 sec) INFO:tensorflow:global_step/sec: 753.01 INFO:tensorflow:global_step/sec: 753.01 INFO:tensorflow:loss = 40.401936, step = 4000 (0.133 sec) INFO:tensorflow:loss = 40.401936, step = 4000 (0.133 sec) INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 4071... INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 4071... INFO:tensorflow:Saving checkpoints for 4071 into /tmp/tmpwufx88ji/model.ckpt. INFO:tensorflow:Saving checkpoints for 4071 into /tmp/tmpwufx88ji/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 4071... INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 4071... INFO:tensorflow:Loss for final step: 51.911263. INFO:tensorflow:Loss for final step: 51.911263. WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_3:0\022\tworkclass" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_5:0\022\teducation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_7:0\022\016marital-status" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\013\n\tConst_9:0\022\noccupation" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_11:0\022\014relationship" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_13:0\022\004race" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_15:0\022\003sex" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" WARNING:tensorflow:Expected binary or unicode string, got type_url: "type.googleapis.com/tensorflow.AssetFileDef" value: "\n\014\n\nConst_17:0\022\016native-country" INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Saver not created because there are no variables in the graph to restore INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Signatures INCLUDED in export for Classify: ['serving_default', 'classification'] INFO:tensorflow:Signatures INCLUDED in export for Classify: ['serving_default', 'classification'] INFO:tensorflow:Signatures INCLUDED in export for Regress: ['regression'] INFO:tensorflow:Signatures INCLUDED in export for Regress: ['regression'] INFO:tensorflow:Signatures INCLUDED in export for Predict: ['predict'] INFO:tensorflow:Signatures INCLUDED in export for Predict: ['predict'] INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Train: None INFO:tensorflow:Signatures INCLUDED in export for Eval: None INFO:tensorflow:Signatures INCLUDED in export for Eval: None INFO:tensorflow:Restoring parameters from /tmp/tmpwufx88ji/model.ckpt-4071 2021-12-04 10:44:22.080737: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:44:22.080796: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... INFO:tensorflow:Restoring parameters from /tmp/tmpwufx88ji/model.ckpt-4071 INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets added to graph. INFO:tensorflow:Assets written to: /tmp/estimator/exported_model_dir/temp-1638614661/assets INFO:tensorflow:Assets written to: /tmp/estimator/exported_model_dir/temp-1638614661/assets INFO:tensorflow:SavedModel written to: /tmp/estimator/exported_model_dir/temp-1638614661/saved_model.pb INFO:tensorflow:SavedModel written to: /tmp/estimator/exported_model_dir/temp-1638614661/saved_model.pb INFO:tensorflow:Calling model_fn. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2021-12-04T10:44:23Z INFO:tensorflow:Starting evaluation at 2021-12-04T10:44:23Z INFO:tensorflow:Graph was finalized. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Restoring parameters from /tmp/tmpwufx88ji/model.ckpt-4071 2021-12-04 10:44:23.300547: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcusolver.so.10'; dlerror: libcusolver.so.10: cannot open shared object file: No such file or directory 2021-12-04 10:44:23.300668: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1757] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform. Skipping registering GPU devices... INFO:tensorflow:Restoring parameters from /tmp/tmpwufx88ji/model.ckpt-4071 INFO:tensorflow:Running local_init_op. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Evaluation [1628/16281] INFO:tensorflow:Evaluation [1628/16281] INFO:tensorflow:Evaluation [3256/16281] INFO:tensorflow:Evaluation [3256/16281] INFO:tensorflow:Evaluation [4884/16281] INFO:tensorflow:Evaluation [4884/16281] INFO:tensorflow:Evaluation [6512/16281] INFO:tensorflow:Evaluation [6512/16281] INFO:tensorflow:Evaluation [8140/16281] INFO:tensorflow:Evaluation [8140/16281] INFO:tensorflow:Evaluation [9768/16281] INFO:tensorflow:Evaluation [9768/16281] INFO:tensorflow:Evaluation [11396/16281] INFO:tensorflow:Evaluation [11396/16281] INFO:tensorflow:Evaluation [13024/16281] INFO:tensorflow:Evaluation [13024/16281] INFO:tensorflow:Evaluation [14652/16281] INFO:tensorflow:Evaluation [14652/16281] INFO:tensorflow:Evaluation [16280/16281] INFO:tensorflow:Evaluation [16280/16281] INFO:tensorflow:Evaluation [16281/16281] INFO:tensorflow:Evaluation [16281/16281] INFO:tensorflow:Inference Time : 12.76048s INFO:tensorflow:Inference Time : 12.76048s INFO:tensorflow:Finished evaluation at 2021-12-04-10:44:35 INFO:tensorflow:Finished evaluation at 2021-12-04-10:44:35 INFO:tensorflow:Saving dict for global step 4071: accuracy = 0.85123765, accuracy_baseline = 0.76377374, auc = 0.9019859, auc_precision_recall = 0.9672531, average_loss = 0.32398567, global_step = 4071, label/mean = 0.76377374, loss = 0.32398567, precision = 0.8828477, prediction/mean = 0.75662553, recall = 0.9284278 INFO:tensorflow:Saving dict for global step 4071: accuracy = 0.85123765, accuracy_baseline = 0.76377374, auc = 0.9019859, auc_precision_recall = 0.9672531, average_loss = 0.32398567, global_step = 4071, label/mean = 0.76377374, loss = 0.32398567, precision = 0.8828477, prediction/mean = 0.75662553, recall = 0.9284278 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 4071: /tmp/tmpwufx88ji/model.ckpt-4071 INFO:tensorflow:Saving 'checkpoint_path' summary for global step 4071: /tmp/tmpwufx88ji/model.ckpt-4071 {'accuracy': 0.85123765, 'accuracy_baseline': 0.76377374, 'auc': 0.9019859, 'auc_precision_recall': 0.9672531, 'average_loss': 0.32398567, 'global_step': 4071, 'label/mean': 0.76377374, 'loss': 0.32398567, 'precision': 0.8828477, 'prediction/mean': 0.75662553, 'recall': 0.9284278}
Co zrobiliśmy
W tym przykładzie użyliśmy tf.Transform
do Preprocesuj zestawu danych danych spisowych i trenować model z oczyszczonych i przekształconych danych. Stworzyliśmy również funkcję wejściową, której moglibyśmy użyć podczas wdrażania naszego wytrenowanego modelu w środowisku produkcyjnym w celu przeprowadzenia wnioskowania. Używając tego samego kodu do uczenia i wnioskowania, unikamy problemów z przekrzywieniem danych. Po drodze dowiedzieliśmy się o tworzeniu transformacji Apache Beam, aby wykonać transformację potrzebną do oczyszczenia danych. Widzieliśmy też, jak używać tego przekształconych danych trenować model używając albo tf.keras
lub tf.estimator
. To tylko niewielka część tego, co potrafi TensorFlow Transform! Zachęcamy do nurkowania w tf.Transform
i dowiedzieć się, co on może zrobić dla Ciebie.