Voir sur TensorFlow.org | Exécuter dans Google Colab | Voir la source sur GitHub | Télécharger le cahier |
Il s'agit d'un fichier de bloc-notes Google Colaboratory . Les programmes Python sont exécutés directement dans le navigateur, un excellent moyen d'apprendre et d'utiliser TensorFlow. Pour suivre ce didacticiel, exécutez le bloc-notes dans Google Colab en cliquant sur le bouton en haut de cette page.
- Dans Colab, connectez-vous à un runtime Python : en haut à droite de la barre de menus, sélectionnez CONNECT .
- Exécutez toutes les cellules de code du bloc-notes : sélectionnez Runtime > Run all .
Téléchargez et installez TensorFlow 2. Importez TensorFlow dans votre programme :
Importez TensorFlow dans votre programme :
import tensorflow as tf
print("TensorFlow version:", tf.__version__)
from tensorflow.keras.layers import Dense, Flatten, Conv2D
from tensorflow.keras import Model
TensorFlow version: 2.8.0-rc1
Chargez et préparez le jeu de données MNIST .
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# Add a channels dimension
x_train = x_train[..., tf.newaxis].astype("float32")
x_test = x_test[..., tf.newaxis].astype("float32")
Utilisez tf.data
pour regrouper et mélanger l'ensemble de données :
train_ds = tf.data.Dataset.from_tensor_slices(
(x_train, y_train)).shuffle(10000).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
Construisez le modèle tf.keras
à l'aide de l' API de sous -classement du modèle Keras :
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = Conv2D(32, 3, activation='relu')
self.flatten = Flatten()
self.d1 = Dense(128, activation='relu')
self.d2 = Dense(10)
def call(self, x):
x = self.conv1(x)
x = self.flatten(x)
x = self.d1(x)
return self.d2(x)
# Create an instance of the model
model = MyModel()
Choisissez un optimiseur et une fonction de perte pour l'entraînement :
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
optimizer = tf.keras.optimizers.Adam()
Sélectionnez des métriques pour mesurer la perte et la précision du modèle. Ces métriques accumulent les valeurs sur des époques, puis impriment le résultat global.
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
Utilisez tf.GradientTape
pour entraîner le modèle :
@tf.function
def train_step(images, labels):
with tf.GradientTape() as tape:
# training=True is only needed if there are layers with different
# behavior during training versus inference (e.g. Dropout).
predictions = model(images, training=True)
loss = loss_object(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
train_loss(loss)
train_accuracy(labels, predictions)
Testez le modèle :
@tf.function
def test_step(images, labels):
# training=False is only needed if there are layers with different
# behavior during training versus inference (e.g. Dropout).
predictions = model(images, training=False)
t_loss = loss_object(labels, predictions)
test_loss(t_loss)
test_accuracy(labels, predictions)
EPOCHS = 5
for epoch in range(EPOCHS):
# Reset the metrics at the start of the next epoch
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()
for images, labels in train_ds:
train_step(images, labels)
for test_images, test_labels in test_ds:
test_step(test_images, test_labels)
print(
f'Epoch {epoch + 1}, '
f'Loss: {train_loss.result()}, '
f'Accuracy: {train_accuracy.result() * 100}, '
f'Test Loss: {test_loss.result()}, '
f'Test Accuracy: {test_accuracy.result() * 100}'
)
Epoch 1, Loss: 0.13306719064712524, Accuracy: 96.03833770751953, Test Loss: 0.0717063844203949, Test Accuracy: 97.68999481201172 Epoch 2, Loss: 0.04493752866983414, Accuracy: 98.61833190917969, Test Loss: 0.058997876942157745, Test Accuracy: 98.18000030517578 Epoch 3, Loss: 0.023821160197257996, Accuracy: 99.22000122070312, Test Loss: 0.0560370571911335, Test Accuracy: 98.30999755859375 Epoch 4, Loss: 0.014193248935043812, Accuracy: 99.50666809082031, Test Loss: 0.06797954440116882, Test Accuracy: 98.29999542236328 Epoch 5, Loss: 0.010457769967615604, Accuracy: 99.63666534423828, Test Loss: 0.08524733036756516, Test Accuracy: 97.83999633789062
Le classificateur d'images est maintenant formé à une précision d'environ 98 % sur cet ensemble de données. Pour en savoir plus, lisez les tutoriels TensorFlow .