Ver en TensorFlow.org | Ejecutar en Google Colab | Ver fuente en GitHub | Descargar libreta |
En TensorFlow 1, para personalizar el comportamiento del entrenamiento, usa tf.estimator.SessionRunHook
con tf.estimator.Estimator
. Esta guía demuestra cómo migrar de SessionRunHook
a las devoluciones de llamada personalizadas de TensorFlow 2 con la API tf.keras.callbacks.Callback
, que funciona con Keras Model.fit
para entrenamiento (así como Model.evaluate
y Model.predict
). Aprenderá a hacer esto mediante la implementación de una SessionRunHook
y Callback
que mide ejemplos por segundo durante el entrenamiento.
Ejemplos de devoluciones de llamadas son el guardado de puntos de control ( tf.keras.callbacks.ModelCheckpoint
) y la escritura de resumen de TensorBoard . Las devoluciones de llamada de Keras son objetos que se llaman en diferentes puntos durante el entrenamiento/evaluación/predicción en las API Model.evaluate
de Model.predict
Model.fit
. Puede obtener más información sobre las devoluciones de llamada en los documentos de tf.keras.callbacks.Callback
API, así como en las guías Escribir sus propias devoluciones de llamada y Capacitación y evaluación con los métodos integrados (la sección Uso de devoluciones de llamada).
Configuración
Comience con importaciones y un conjunto de datos simple para fines de demostración:
import tensorflow as tf
import tensorflow.compat.v1 as tf1
import time
from datetime import datetime
from absl import flags
features = [[1., 1.5], [2., 2.5], [3., 3.5]]
labels = [[0.3], [0.5], [0.7]]
eval_features = [[4., 4.5], [5., 5.5], [6., 6.5]]
eval_labels = [[0.8], [0.9], [1.]]
TensorFlow 1: cree un SessionRunHook personalizado con las API de tf.estimator
Los siguientes ejemplos de TensorFlow 1 muestran cómo configurar un SessionRunHook
personalizado que mide ejemplos por segundo durante el entrenamiento. Después de crear el gancho ( LoggerHook
), páselo al parámetro de hooks
de tf.estimator.Estimator.train
.
def _input_fn():
return tf1.data.Dataset.from_tensor_slices(
(features, labels)).batch(1).repeat(100)
def _model_fn(features, labels, mode):
logits = tf1.layers.Dense(1)(features)
loss = tf1.losses.mean_squared_error(labels=labels, predictions=logits)
optimizer = tf1.train.AdagradOptimizer(0.05)
train_op = optimizer.minimize(loss, global_step=tf1.train.get_global_step())
return tf1.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
class LoggerHook(tf1.train.SessionRunHook):
"""Logs loss and runtime."""
def begin(self):
self._step = -1
self._start_time = time.time()
self.log_frequency = 10
def before_run(self, run_context):
self._step += 1
def after_run(self, run_context, run_values):
if self._step % self.log_frequency == 0:
current_time = time.time()
duration = current_time - self._start_time
self._start_time = current_time
examples_per_sec = self.log_frequency / duration
print('Time:', datetime.now(), ', Step #:', self._step,
', Examples per second:', examples_per_sec)
estimator = tf1.estimator.Estimator(model_fn=_model_fn)
# Begin training.
estimator.train(_input_fn, hooks=[LoggerHook()])
INFO:tensorflow:Using default config. WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpe4lxk_r8 INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpe4lxk_r8', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true graph_options { rewrite_options { meta_optimizer_iterations: ONE } } , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1} WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. INFO:tensorflow:Calling model_fn. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.7/site-packages/tensorflow/python/training/adagrad.py:77: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Create CheckpointSaverHook. INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 0... INFO:tensorflow:Saving checkpoints for 0 into /tmp/tmpe4lxk_r8/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 0... Time: 2021-10-26 01:34:53.978329 , Step #: 0 , Examples per second: 6.5659573368942015 INFO:tensorflow:loss = 0.272405, step = 0 Time: 2021-10-26 01:34:54.010834 , Step #: 10 , Examples per second: 307.6243353258279 Time: 2021-10-26 01:34:54.020112 , Step #: 20 , Examples per second: 1077.700865900974 Time: 2021-10-26 01:34:54.029483 , Step #: 30 , Examples per second: 1067.1171606665819 Time: 2021-10-26 01:34:54.039412 , Step #: 40 , Examples per second: 1007.1566814743667 Time: 2021-10-26 01:34:54.048087 , Step #: 50 , Examples per second: 1152.756355641061 Time: 2021-10-26 01:34:54.056877 , Step #: 60 , Examples per second: 1137.6234777184084 Time: 2021-10-26 01:34:54.066122 , Step #: 70 , Examples per second: 1081.6752630493088 Time: 2021-10-26 01:34:54.074645 , Step #: 80 , Examples per second: 1173.2647067050827 Time: 2021-10-26 01:34:54.083555 , Step #: 90 , Examples per second: 1122.3118912554853 INFO:tensorflow:global_step/sec: 866.456 Time: 2021-10-26 01:34:54.094488 , Step #: 100 , Examples per second: 914.6685275645499 INFO:tensorflow:loss = 0.00072448375, step = 100 (0.116 sec) Time: 2021-10-26 01:34:54.104045 , Step #: 110 , Examples per second: 1046.3525009355121 Time: 2021-10-26 01:34:54.112493 , Step #: 120 , Examples per second: 1183.7949817956028 Time: 2021-10-26 01:34:54.120903 , Step #: 130 , Examples per second: 1189.0301913536498 Time: 2021-10-26 01:34:54.129681 , Step #: 140 , Examples per second: 1139.106488145352 Time: 2021-10-26 01:34:54.138138 , Step #: 150 , Examples per second: 1182.5933966786026 Time: 2021-10-26 01:34:54.146595 , Step #: 160 , Examples per second: 1182.4933746828306 Time: 2021-10-26 01:34:54.155248 , Step #: 170 , Examples per second: 1155.551147477753 Time: 2021-10-26 01:34:54.163869 , Step #: 180 , Examples per second: 1159.993362464738 Time: 2021-10-26 01:34:54.172881 , Step #: 190 , Examples per second: 1109.5455266917095 INFO:tensorflow:global_step/sec: 1129.39 Time: 2021-10-26 01:34:54.183226 , Step #: 200 , Examples per second: 966.6745027541543 INFO:tensorflow:loss = 0.004354417, step = 200 (0.088 sec) Time: 2021-10-26 01:34:54.192698 , Step #: 210 , Examples per second: 1055.8082867643357 Time: 2021-10-26 01:34:54.201008 , Step #: 220 , Examples per second: 1203.288865937975 Time: 2021-10-26 01:34:54.209423 , Step #: 230 , Examples per second: 1188.3900946336487 Time: 2021-10-26 01:34:54.218621 , Step #: 240 , Examples per second: 1087.1987350631173 Time: 2021-10-26 01:34:54.227779 , Step #: 250 , Examples per second: 1091.9538673817397 Time: 2021-10-26 01:34:54.236563 , Step #: 260 , Examples per second: 1138.4571955919873 Time: 2021-10-26 01:34:54.244876 , Step #: 270 , Examples per second: 1202.9437577078613 Time: 2021-10-26 01:34:54.253524 , Step #: 280 , Examples per second: 1156.2838396647737 Time: 2021-10-26 01:34:54.262094 , Step #: 290 , Examples per second: 1166.8671581582973 INFO:tensorflow:Calling checkpoint listeners before saving checkpoint 300... INFO:tensorflow:Saving checkpoints for 300 into /tmp/tmpe4lxk_r8/model.ckpt. INFO:tensorflow:Calling checkpoint listeners after saving checkpoint 300... INFO:tensorflow:Loss for final step: 0.0026133624. <tensorflow_estimator.python.estimator.estimator.Estimator at 0x7f9750e2efd0>
TensorFlow 2: crea una devolución de llamada de Keras personalizada para Model.fit
En TensorFlow 2, cuando usas el Keras Model.fit
(o Model.evaluate
) integrado para entrenamiento/evaluación, puedes configurar un tf.keras.callbacks.Callback
personalizado, que luego pasas al parámetro callbacks
de Model.fit
(o Model.evaluate
). (Obtenga más información en la guía Cómo escribir sus propias devoluciones de llamada).
En el siguiente ejemplo, escribirá un tf.keras.callbacks.Callback
personalizado que registra varias métricas; medirá ejemplos por segundo, que deberían ser comparables a las métricas del ejemplo anterior SessionRunHook
.
class CustomCallback(tf.keras.callbacks.Callback):
def on_train_begin(self, logs = None):
self._step = -1
self._start_time = time.time()
self.log_frequency = 10
def on_train_batch_begin(self, batch, logs = None):
self._step += 1
def on_train_batch_end(self, batch, logs = None):
if self._step % self.log_frequency == 0:
current_time = time.time()
duration = current_time - self._start_time
self._start_time = current_time
examples_per_sec = self.log_frequency / duration
print('Time:', datetime.now(), ', Step #:', self._step,
', Examples per second:', examples_per_sec)
callback = CustomCallback()
dataset = tf.data.Dataset.from_tensor_slices(
(features, labels)).batch(1).repeat(100)
model = tf.keras.models.Sequential([tf.keras.layers.Dense(1)])
optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.05)
model.compile(optimizer, "mse")
# Begin training.
result = model.fit(dataset, callbacks=[callback], verbose = 0)
# Provide the results of training metrics.
result.history
Time: 2021-10-26 01:34:54.545193 , Step #: 0 , Examples per second: 47.66297875435231 Time: 2021-10-26 01:34:54.558176 , Step #: 10 , Examples per second: 770.1198979123442 Time: 2021-10-26 01:34:54.570778 , Step #: 20 , Examples per second: 793.5191176192368 Time: 2021-10-26 01:34:54.583033 , Step #: 30 , Examples per second: 815.9807011400335 Time: 2021-10-26 01:34:54.595632 , Step #: 40 , Examples per second: 793.6993093007853 Time: 2021-10-26 01:34:54.607942 , Step #: 50 , Examples per second: 812.3458320421444 Time: 2021-10-26 01:34:54.619847 , Step #: 60 , Examples per second: 840.0368515922291 Time: 2021-10-26 01:34:54.632529 , Step #: 70 , Examples per second: 788.4919351806594 Time: 2021-10-26 01:34:54.646415 , Step #: 80 , Examples per second: 720.1881900444719 Time: 2021-10-26 01:34:54.659728 , Step #: 90 , Examples per second: 751.1154886194731 Time: 2021-10-26 01:34:54.672811 , Step #: 100 , Examples per second: 764.3517877318949 Time: 2021-10-26 01:34:54.685740 , Step #: 110 , Examples per second: 773.5000461041955 Time: 2021-10-26 01:34:54.698443 , Step #: 120 , Examples per second: 787.2192192192192 Time: 2021-10-26 01:34:54.711277 , Step #: 130 , Examples per second: 779.161449722279 Time: 2021-10-26 01:34:54.725101 , Step #: 140 , Examples per second: 723.355408388521 Time: 2021-10-26 01:34:54.738438 , Step #: 150 , Examples per second: 749.7861994994637 Time: 2021-10-26 01:34:54.752388 , Step #: 160 , Examples per second: 716.8280010937927 Time: 2021-10-26 01:34:54.765563 , Step #: 170 , Examples per second: 759.0538755270826 Time: 2021-10-26 01:34:54.779201 , Step #: 180 , Examples per second: 733.295569775167 Time: 2021-10-26 01:34:54.792040 , Step #: 190 , Examples per second: 778.8865366759517 Time: 2021-10-26 01:34:54.804998 , Step #: 200 , Examples per second: 771.664274938367 Time: 2021-10-26 01:34:54.818003 , Step #: 210 , Examples per second: 768.9762393663831 Time: 2021-10-26 01:34:54.831546 , Step #: 220 , Examples per second: 738.3428098649814 Time: 2021-10-26 01:34:54.845028 , Step #: 230 , Examples per second: 741.7245525924878 Time: 2021-10-26 01:34:54.858053 , Step #: 240 , Examples per second: 767.7375896910236 Time: 2021-10-26 01:34:54.871158 , Step #: 250 , Examples per second: 763.0585624101734 Time: 2021-10-26 01:34:54.883612 , Step #: 260 , Examples per second: 802.922010796738 Time: 2021-10-26 01:34:54.896472 , Step #: 270 , Examples per second: 777.6301981941895 Time: 2021-10-26 01:34:54.909765 , Step #: 280 , Examples per second: 752.2740561384629 Time: 2021-10-26 01:34:54.922856 , Step #: 290 , Examples per second: 763.8645759347284 {'loss': [0.33093082904815674]}
Próximos pasos
Obtenga más información sobre las devoluciones de llamadas en:
- Documentos API:
tf.keras.callbacks.Callback
- Guía: escribir sus propias devoluciones de llamada
- Guía: Capacitación y evaluación con los métodos integrados (la sección Uso de devoluciones de llamada)
También puede encontrar útiles los siguientes recursos relacionados con la migración:
- La guía de migración de detención anticipada:
tf.keras.callbacks.EarlyStopping
es una devolución de llamada de detención anticipada integrada - La guía de migración de TensorBoard: TensorBoard permite rastrear y mostrar métricas
- La guía de migración de devoluciones de llamada de LoggingTensorHook y StopAtStepHook a Keras