Returns a Dataset of features from SequenceExample.
tfr.data.read_batched_sequence_example_dataset(
    file_pattern,
    batch_size,
    list_size,
    context_feature_spec,
    example_feature_spec,
    reader=tfr.keras.pipeline.DatasetHparams.dataset_reader,
    reader_args=None,
    num_epochs=None,
    shuffle=True,
    shuffle_buffer_size=1000,
    shuffle_seed=None,
    prefetch_buffer_size=32,
    reader_num_threads=10,
    sloppy_ordering=True,
    drop_final_batch=False
)
Example:
data = [
  sequence_example {
    context {
      feature {
        key: "query_length"
        value { int64_list { value: 3 } }
      }
    }
    feature_lists {
      feature_list {
        key: "unigrams"
        value {
          feature { bytes_list { value: "tensorflow" } }
          feature { bytes_list { value: ["learning" "to" "rank"] } }
        }
      }
      feature_list {
        key: "utility"
        value {
          feature { float_list { value: 0.0 } }
          feature { float_list { value: 1.0 } }
        }
      }
    }
  }
  sequence_example {
    context {
      feature {
        key: "query_length"
        value { int64_list { value: 2 } }
      }
    }
    feature_lists {
      feature_list {
        key: "unigrams"
        value {
          feature { bytes_list { value: "gbdt" } }
          feature { }
        }
      }
      feature_list {
        key: "utility"
        value {
          feature { float_list { value: 0.0 } }
          feature { float_list { value: 0.0 } }
        }
      }
    }
  }
]
We can use arguments:
context_features: {
  "query_length": parsing_ops.FixedLenFeature([1], dtypes.int64)
}
example_features: {
  "unigrams": parsing_ops.VarLenFeature(dtypes.string),
  "utility": parsing_ops.FixedLenFeature([1], dtypes.float32,
  default_value=[0.])
}
batch_size: 2
And the expected output is:
{
  "unigrams": SparseTensor(
    indices=array([[0, 0, 0], [0, 1, 0], [0, 1, 1], [0, 1, 2], [1, 0, 0], [1,
    1, 0], [1, 1, 1]]),
    values=["tensorflow", "learning", "to", "rank", "gbdt"],
    dense_shape=array([2, 2, 3])),
  "utility": [[[ 0.], [ 1.]], [[ 0.], [ 0.]]],
  "query_length": [[3], [2]],
}
Args | 
file_pattern
 | 
(str | list(str)) List of files or patterns of file paths
containing tf.SequenceExample protos. See tf.gfile.Glob for pattern
rules.
 | 
batch_size
 | 
(int) Number of records to combine in a single batch.
 | 
list_size
 | 
(int) The number of frames to keep in a SequenceExample. If
specified, truncation or padding may happen. Otherwise, set it to None to
allow dynamic list size.
 | 
context_feature_spec
 | 
(dict) A mapping from  feature keys to
FixedLenFeature or VarLenFeature values.
 | 
example_feature_spec
 | 
(dict) A mapping feature keys to FixedLenFeature or
VarLenFeature values.
 | 
reader
 | 
A function or class that can be called with a filenames tensor and
(optional) reader_args and returns a Dataset. Defaults to
tf.data.TFRecordDataset.
 | 
reader_args
 | 
(list) Additional argument list to pass to the reader class.
 | 
num_epochs
 | 
(int) Number of times to read through the dataset. If None,
cycles through the dataset forever. Defaults to None.
 | 
shuffle
 | 
(bool) Indicates whether the input should be shuffled. Defaults to
True.
 | 
shuffle_buffer_size
 | 
(int) Buffer size of the ShuffleDataset. A large
capacity ensures better shuffling but would increase memory usage and
startup time.
 | 
shuffle_seed
 | 
(int) Randomization seed to use for shuffling.
 | 
prefetch_buffer_size
 | 
(int) Number of feature batches to prefetch in order
to improve performance. Recommended value is the number of batches
consumed per training step (default is 1).
 | 
reader_num_threads
 | 
(int) Number of threads used to read records. If greater
than 1, the results will be interleaved.
 | 
sloppy_ordering
 | 
(bool) If True, reading performance will be improved at
the cost of non-deterministic ordering. If False, the order of elements
produced is deterministic prior to shuffling (elements are still
randomized if shuffle=True. Note that if the seed is set, then order of
elements after shuffling is deterministic). Defaults to False.
 | 
drop_final_batch
 | 
(bool) If True, and the batch size does not evenly
divide the input dataset size, the final smaller batch will be dropped.
Defaults to False. If True, the batch_size can be statically inferred.
 | 
Returns | 
A dataset of dict elements. Each dict maps feature keys to
Tensor or SparseTensor objects. The context features are mapped to a
rank-2 tensor of shape [batch_size, feature_size], and the example features
are mapped to a rank-3 tensor of shape [batch_size, list_size,
feature_size], where list_size is the number of examples.
 |