View source on GitHub
|
Computes mean squared loss between y_true and y_pred.
tfr.keras.losses.MeanSquaredLoss(
reduction: tf.losses.Reduction = tf.losses.Reduction.AUTO,
name: Optional[str] = None,
ragged: bool = False
)
loss = (y_true - y_pred)**2
Standalone usage:
y_true = [[1., 0.]]y_pred = [[0.6, 0.8]]loss = tfr.keras.losses.MeanSquaredLoss()loss(y_true, y_pred).numpy()0.4
# Using ragged tensorsy_true = tf.ragged.constant([[1., 0.], [0., 1., 0.]])y_pred = tf.ragged.constant([[0.6, 0.8], [0.5, 0.8, 0.4]])loss = tfr.keras.losses.MeanSquaredLoss(ragged=True)loss(y_true, y_pred).numpy()0.20833336
Usage with the compile() API:
model.compile(optimizer='sgd', loss=tfr.keras.losses.MeanSquaredLoss())
Definition:
\[ \mathcal{L}(\{y\}, \{s\}) = \sum_i (y_i - s_i)^{2} \]
Args | |
|---|---|
reduction
|
(Optional) The tf.keras.losses.Reduction to use (see
tf.keras.losses.Loss).
|
name
|
(Optional) The name for the op. |
ragged
|
(Optional) If True, this loss will accept ragged tensors. If False, this loss will accept dense tensors. |
Methods
from_config
@classmethodfrom_config( config )
Instantiates a Loss from its config (output of get_config()).
| Args | |
|---|---|
config
|
Output of get_config().
|
| Returns | |
|---|---|
A Loss instance.
|
get_config
get_config() -> Dict[str, Any]
Returns the config dictionary for a Loss instance.
__call__
__call__(
y_true: tfr.keras.model.TensorLike,
y_pred: tfr.keras.model.TensorLike,
sample_weight: Optional[utils.TensorLike] = None
) -> tf.Tensor
See tf.keras.losses.Loss.
View source on GitHub