tf.keras.Loss
Stay organized with collections
Save and categorize content based on your preferences.
Loss base class.
tf.keras.Loss(
name=None, reduction='sum_over_batch_size', dtype=None
)
To be implemented by subclasses:
call()
: Contains the logic for loss calculation using y_true
,
y_pred
.
Example subclass implementation:
class MeanSquaredError(Loss):
def call(self, y_true, y_pred):
return ops.mean(ops.square(y_pred - y_true), axis=-1)
Methods
call
View source
call(
y_true, y_pred
)
from_config
View source
@classmethod
from_config(
config
)
get_config
View source
get_config()
__call__
View source
__call__(
y_true, y_pred, sample_weight=None
)
Call self as a function.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-06-07 UTC.
[null,null,["Last updated 2024-06-07 UTC."],[],[],null,["# tf.keras.Loss\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/losses/loss.py#L9-L74) |\n\nLoss base class.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.keras.losses.Loss`](https://www.tensorflow.org/api_docs/python/tf/keras/Loss)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.Loss`](https://www.tensorflow.org/api_docs/python/tf/keras/Loss)\n\n\u003cbr /\u003e\n\n tf.keras.Loss(\n name=None, reduction='sum_over_batch_size', dtype=None\n )\n\nTo be implemented by subclasses:\n\n- `call()`: Contains the logic for loss calculation using `y_true`, `y_pred`.\n\nExample subclass implementation: \n\n class MeanSquaredError(Loss):\n def call(self, y_true, y_pred):\n return ops.mean(ops.square(y_pred - y_true), axis=-1)\n\nMethods\n-------\n\n### `call`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/losses/loss.py#L63-L64) \n\n call(\n y_true, y_pred\n )\n\n### `from_config`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/losses/loss.py#L69-L71) \n\n @classmethod\n from_config(\n config\n )\n\n### `get_config`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/losses/loss.py#L66-L67) \n\n get_config()\n\n### `__call__`\n\n[View source](https://github.com/keras-team/keras/tree/v3.3.3/keras/src/losses/loss.py#L32-L61) \n\n __call__(\n y_true, y_pred, sample_weight=None\n )\n\nCall self as a function."]]