Creates a recurrent neural network specified by RNNCell cell. (deprecated)

Performs fully dynamic unrolling of inputs.


# create a BasicRNNCell
rnn_cell = tf.compat.v1.nn.rnn_cell.BasicRNNCell(hidden_size)

# 'outputs' is a tensor of shape [batch_size, max_time, cell_state_size]

# defining initial state
initial_state = rnn_cell.zero_state(batch_size, dtype=tf.float32)

# 'state' is a tensor of shape [batch_size, cell_state_size]
outputs, state = tf.compat.v1.nn.dynamic_rnn(rnn_cell, input_data,
# create 2 LSTMCells
rnn_layers = [tf.compat.v1.nn.rnn_cell.LSTMCell(size) for size in [128, 256]]

# create a RNN cell composed sequentially of a number of RNNCells
multi_rnn_cell = tf.compat.v1.nn.rnn_cell.MultiRNNCell(rnn_layers)

# 'outputs' is a tensor of shape [batch_size, max_time, 256]
# 'state' is a N-tuple where N is the number of LSTMCells containing a
# tf.nn.rnn_cell.LSTMStateTuple for each cell
outputs, state = tf.compat.v1.nn.dynamic_rnn(cell=multi_rnn_cell,

cell An instance of RNNCell.
inputs The RNN inputs. If time_major == False (default), this must be a Tensor of shape: [batch_size, max_time, ...], or a nested tuple of such elements. If time_major == True, this must be a Tensor of shape: [max_time, batch_size, ...], or a nested tuple of such elements. This may also be a (possibly nested) tuple of Tensors satisfying this property. The first two dimensions must match across all the inputs, but otherwise the ranks and other shape components may differ. In this case, input to cell at each time-step will replicate the structure of these tuples, except for the time dimension (from which the time is taken). The input to cell at each time step will be a Tensor or (possibly nested) tuple of Tensors each with dimensions [batch_size, ...].
sequence_length (optional) An int32/int64 vector sized [batch_size]. Used to copy-through state and zero-out outputs when past a batch element's sequence length. This parameter enables users to extract the last valid state and prope