Count the number of occurrences of each value in a tensor of integers.
tf.keras.ops.bincount(
    x, weights=None, minlength=0, sparse=False
)
| Args | 
|---|
| x | Input tensor.
It must be of dimension 1, and it must only contain non-negative
integer(s). | 
| weights | Weight tensor.
It must have the same length as x. The default value isNone.
If specified,xis weighted by it, i.e. ifn = x[i],out[n] += weight[i]instead of the default behaviorout[n] += 1. | 
| minlength | An integer.
The default value is 0. If specified, there will be at least
this number of bins in the output tensor. If greater than max(x) + 1, each value of the output at an index higher thanmax(x)is set to 0. | 
| sparse | Whether to return a sparse tensor; for backends that support
sparse tensors. | 
| Returns | 
|---|
| 1D tensor where each element gives the number of occurrence(s) of its
index value in x. Its length is the maximum between max(x) + 1and
minlength. | 
Examples:
x = keras.ops.array([1, 2, 2, 3], dtype="uint8")
keras.ops.bincount(x)
array([0, 1, 2, 1], dtype=int32)
weights = x / 2
weights
array([0.5, 1., 1., 1.5], dtype=float64)
keras.ops.bincount(x, weights=weights)
array([0., 0.5, 2., 1.5], dtype=float64)
minlength = (keras.ops.max(x).numpy() + 1) + 2 # 6
keras.ops.bincount(x, minlength=minlength)
array([0, 1, 2, 1, 0, 0], dtype=int32)