Creates a dataset containing elements of input_dataset matching predicate.
tf.raw_ops.ParallelFilterDataset(
    input_dataset,
    other_arguments,
    num_parallel_calls,
    predicate,
    output_types,
    output_shapes,
    deterministic='default',
    metadata='',
    name=None
)
The predicate function must return a scalar boolean and accept the
following arguments:
- One tensor for each component of an element of 
input_dataset. - One tensor for each value in 
other_arguments. 
Unlike a "FilterDataset", which applies predicate sequentially, this dataset
invokes up to num_parallel_calls copies of predicate in parallel.
Args | |
|---|---|
input_dataset
 | 
A Tensor of type variant.
 | 
other_arguments
 | 
A list of Tensor objects.
A list of tensors, typically values that were captured when
building a closure for predicate.
 | 
num_parallel_calls
 | 
A Tensor of type int64.
The number of concurrent invocations of predicate that process
elements from input_dataset in parallel.
 | 
predicate
 | 
A function decorated with @Defun. A function returning a scalar boolean. | 
output_types
 | 
A list of tf.DTypes that has length >= 1.
 | 
output_shapes
 | 
A list of shapes (each a tf.TensorShape or list of ints) that has length >= 1.
 | 
deterministic
 | 
An optional string. Defaults to "default".
A string indicating the op-level determinism to use. Deterministic controls
whether the interleave is allowed to return elements out of order if the next
element to be returned isn't available, but a later element is. Options are
"true", "false", and "default". "default" indicates that determinism should be
decided by the experimental_deterministic parameter of tf.data.Options.
 | 
metadata
 | 
An optional string. Defaults to "".
 | 
name
 | 
A name for the operation (optional). | 
Returns | |
|---|---|
A Tensor of type variant.
 |