ML Community Day is November 9! Join us for updates from TensorFlow, JAX, and more Learn more

tf.compat.v1.data.Dataset

Represents a potentially large set of elements.

Inherits From: Dataset

Used in the notebooks

Used in the guide

A Dataset can be used to represent an input pipeline as a collection of elements and a "logical plan" of transformations that act on those elements.

variant_tensor A DT_VARIANT tensor that represents the dataset.

element_spec The type specification of an element of this dataset.

dataset = tf.data.Dataset.from_tensor_slices([1, 2, 3])
dataset.element_spec
TensorSpec(shape=(), dtype=tf.int32, name=None)

For more information, read this guide.

output_classes Returns the class of each component of an element of this dataset. (deprecated)

output_shapes Returns the shape of each component of an element of this dataset. (deprecated)
output_types Returns the type of each component of an element of this dataset. (deprecated)

Methods

apply

View source

Applies a transformation function to this dataset.

apply enables chaining of custom Dataset transformations, which are represented as functions that take one Dataset argument and return a transformed Dataset.

dataset = tf.data.Dataset.range(100)
def dataset_fn(ds):
  return ds.filter(lambda x: x < 5)
dataset = dataset.apply(dataset_fn)
list(dataset.as_numpy_iterator())