Compute the regularized incomplete beta integral \(I_x(a, b)\).
tf.raw_ops.Betainc(
    a, b, x, name=None
)
The regularized incomplete beta integral is defined as:
\(I_x(a, b) = \frac{B(x; a, b)}{B(a, b)}\)
where
\(B(x; a, b) = \int_0^x t^{a-1} (1 - t)^{b-1} dt\)
is the incomplete beta function and \(B(a, b)\) is the complete beta function.
| Args | |
|---|---|
| a | A Tensor. Must be one of the following types:float32,float64. | 
| b | A Tensor. Must have the same type asa. | 
| x | A Tensor. Must have the same type asa. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensor. Has the same type asa. |