ML Community Day is November 9! Join us for updates from TensorFlow, JAX, and more Learn more


Initializer that generates tensors with a uniform distribution.

Inherits From: Initializer

Used in the notebooks

Used in the tutorials

Also available via the shortcut function tf.keras.initializers.random_uniform.


# Standalone usage:
initializer = tf.keras.initializers.RandomUniform(minval=0., maxval=1.)
values = initializer(shape=(2, 2))
# Usage in a Keras layer:
initializer = tf.keras.initializers.RandomUniform(minval=0., maxval=1.)
layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)

minval A python scalar or a scalar tensor. Lower bound of the range of random values to generate (inclusive).
maxval A python scalar or a scalar tensor. Upper bound of the range of random values to generate (exclusive).
seed A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype.



View source

Instantiates an initializer from a configuration dictionary.


initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)

config A Python dictionary, the output of get_config.

A tf.keras.initializers.Initializer instance.


View source

Returns the configuration of the initializer as a JSON-serializable dict.

A JSON-serializable Python dict.


View source

Returns a tensor object initialized as specified by the initializer.

shape Shape of the tensor.
dtype Optional dtype of the tensor. Only floating point and integer types are supported. If not specified, tf.keras.backend.floatx() is used, which default to float32 unless you configured it otherwise (via tf.keras.backend.set_floatx(float_dtype)).
**kwargs Additional keyword arguments.