Help protect the Great Barrier Reef with TensorFlow on Kaggle Join Challenge

tf.experimental.dispatch_for_binary_elementwise_apis

Decorator to override default implementation for binary elementwise APIs.

Used in the notebooks

Used in the guide

The decorated function (known as the "elementwise api handler") overrides the default implementation for any binary elementwise API whenever the value for the first two arguments (typically named x and y) match the specified type annotations. The elementwise api handler is called with two arguments:

elementwise_api_handler(api_func, x, y)

Where x and y are the first two arguments to the elementwise api, and api_func is a TensorFlow function that takes two parameters and performs the elementwise operation (e.g., tf.add).

The following example shows how this decorator can be used to update all binary elementwise operations to handle a MaskedTensor type:

from tensorflow.python.framework import extension_type
class MaskedTensor(extension_type.ExtensionType):
  values: tf.Tensor
  mask: tf.Tensor
@dispatch_for_binary_elementwise_apis(MaskedTensor, MaskedTensor)
def binary_elementwise_api_handler(api_func, x, y):
  return MaskedTensor(api_func(x.values, y.values), x.mask & y.mask)
a = MaskedTensor([1, 2, 3, 4, 5], [True, True, True, True, False])
b = MaskedTensor([2, 4, 6, 8, 0], [True, True, True, False, True])
c = tf.add(a, b)
print(f"values={c.values.numpy()}, mask={c.mask.numpy()}")
values=[ 3 6 9 12 5], mask=[ True True True False False]

x_type A type annotation indicating when the api handler should be called.
y_type A type annotation indicating when the api handler should be called.

A decorator.

Registered APIs

The binary elementwise APIs are: