ML Community Day is November 9! Join us for updates from TensorFlow, JAX, and more Learn more


Student's t-distribution.

Inherits From: Distribution

This distribution has parameters: degree of freedom df, location loc, and scale.

Mathematical details

The probability density function (pdf) is,

pdf(x; df, mu, sigma) = (1 + y**2 / df)**(-0.5 (df + 1)) / Z
y = (x - mu) / sigma
Z = abs(sigma) sqrt(df pi) Gamma(0.5 df) / Gamma(0.5 (df + 1))


  • loc = mu,
  • scale = sigma, and,
  • Z is the normalization constant, and,
  • Gamma is the gamma function.

The StudentT distribution is a member of the location-scale family, i.e., it can be constructed as,

X ~ StudentT(df, loc=0, scale=1)
Y = loc + scale * X

Notice that scale has semantics more similar to standard deviation than variance. However it is not actually the std. deviation; the Student's t-distribution std. dev. is scale sqrt(df / (df - 2)) when df > 2.

Samples of this distribution are reparameterized (pathwise differentiable). The derivatives are computed using the approach described in (Figurnov et al., 2018).


Examples of initialization of one or a batch of distributions.

import tensorflow_probability as tfp
tfd = tfp.distributions

# Define a single scalar Student t distribution.
single_dist = tfd.StudentT(df=3)

# Evaluate the pdf at 1, returning a scalar Tensor.

# Define a batch of two scalar valued Student t's.
# The first has degrees of freedom 2, mean 1, and scale 11.
# The second 3, 2 and 22.
multi_dist = tfd.StudentT(df=[2, 3], loc=[1, 2.], scale=[11, 22.])

# Evaluate the pdf of the first distribution on 0, and the second on 1.5,
# returning a length two tensor.
multi_dist.prob([0, 1.5])

# Get 3 samples, returning a 3 x 2 tensor.

Arguments are broadcast when possible.

# Define a batch of two Student's t distributions.
# Both have df 2 and mean 1, but different scales.
dist = tfd.StudentT(df=2, loc=1, scale=[11, 22.])

# Evaluate the pdf of both distributions on the same point, 3.0,
# returning a length 2 tensor.

Compute the gradients of samples w.r.t. the parameters:

df = tf.constant(2.0)
loc = tf.constant(2.0)
scale = tf.constant(11.0)
dist = tfd.StudentT(df=df, loc=loc, scale=scale)
samples = dist.sample(5)  # Shape [5]
loss = tf.reduce_mean(tf.square(samples))  # Arbitrary loss function
# Unbiased stochastic gradients of the loss function
grads = tf.gradients(loss, [df, loc, scale])


Implicit Reparameterization Gradients: Figurnov et al., 2018 (pdf)

df Floating-point Tensor. The degrees of freedom of the distribution(s). df must contain only positive values.
loc Floating-point Tensor. The mean(s) of the distribution(s).
scale Floating-point Tensor. The scaling factor(s) for the distribution(s). Note that scale is not technically the standard deviation of this distribution but has semantics more similar to standard deviation than variance.
validate_args Python bool, default False. When True distribution parameters are checked for validity despite possibly degrading runtime performance. When False invalid inputs may silently render incorrect outputs.
allow_nan_stats Python bool, default True. When True, statistics (e.g., mean, mode, variance) use the value "NaN" to indicate the result is undefined. When False, an exception is raised if one or more of the statistic's batch members are undefined.
name Python str name prefixed to Ops created by this class.

TypeError if loc and scale are different dtypes.

allow_nan_stats Py