View source on GitHub
|
Calculates the number of true positives.
Inherits From: Metric
tf.keras.metrics.TruePositives(
thresholds=None, name=None, dtype=None
)
Used in the notebooks
| Used in the tutorials |
|---|
If sample_weight is given, calculates the sum of the weights of
true positives. This metric creates one local variable, true_positives
that is used to keep track of the number of true positives.
If sample_weight is None, weights default to 1.
Use sample_weight of 0 to mask values.
Example:
m = keras.metrics.TruePositives()m.update_state([0, 1, 1, 1], [1, 0, 1, 1])m.result()2.0
m.reset_state()m.update_state([0, 1, 1, 1], [1, 0, 1, 1], sample_weight=[0, 0, 1, 0])m.result()1.0
Attributes | |
|---|---|
dtype
|
|
variables
|
|
Methods
add_variable
add_variable(
shape, initializer, dtype=None, aggregation='sum', name=None
)
add_weight
add_weight(
shape=(), initializer=None, dtype=None, name=None
)
from_config
@classmethodfrom_config( config )
get_config
get_config()
Return the serializable config of the metric.
reset_state
reset_state()
Reset all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result()
Compute the current metric value.
| Returns | |
|---|---|
| A scalar tensor, or a dictionary of scalar tensors. |
stateless_reset_state
stateless_reset_state()
stateless_result
stateless_result(
metric_variables
)
stateless_update_state
stateless_update_state(
metric_variables, *args, **kwargs
)
update_state
update_state(
y_true, y_pred, sample_weight=None
)
Accumulates the metric statistics.
| Args | |
|---|---|
y_true
|
The ground truth values. |
y_pred
|
The predicted values. |
sample_weight
|
Optional weighting of each example. Defaults to 1.
Can be a tensor whose rank is either 0, or the same rank as
y_true, and must be broadcastable to y_true.
|
__call__
__call__(
*args, **kwargs
)
Call self as a function.
View source on GitHub