Compute the lower regularized incomplete Gamma function P(a, x).
tf.math.igamma(
    a: Annotated[Any, tf.raw_ops.Any],
    x: Annotated[Any, tf.raw_ops.Any],
    name=None
) -> Annotated[Any, tf.raw_ops.Any]
Used in the notebooks
| Used in the tutorials | 
|---|
The lower regularized incomplete Gamma function is defined as:
\(P(a, x) = gamma(a, x) / Gamma(a) = 1 - Q(a, x)\)
where
\(gamma(a, x) = \int_{0}^{x} t^{a-1} exp(-t) dt\)
is the lower incomplete Gamma function.
Note, above Q(a, x) (Igammac) is the upper regularized complete
Gamma function.
| Args | |
|---|---|
| a | A Tensor. Must be one of the following types:bfloat16,half,float32,float64. | 
| x | A Tensor. Must have the same type asa. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensor. Has the same type asa. |