tf.compat.v1.distributions.Gamma

Gamma distribution.

Inherits From: Distribution

The Gamma distribution is defined over positive real numbers using parameters concentration (aka "alpha") and rate (aka "beta").

Mathematical Details

The probability density function (pdf) is,

pdf(x; alpha, beta, x > 0) = x**(alpha - 1) exp(-x beta) / Z
Z = Gamma(alpha) beta**(-alpha)

where:

  • concentration = alpha, alpha > 0,
  • rate = beta, beta > 0,
  • Z is the normalizing constant, and,
  • Gamma is the gamma function.

The cumulative density function (cdf) is,

cdf(x; alpha, beta, x > 0) = GammaInc(alpha, beta x) / Gamma(alpha)

where GammaInc is the lower incomplete Gamma function.

The parameters can be intuited via their relationship to mean and stddev,

concentration = alpha = (mean / stddev)**2
rate = beta = mean / stddev**2 = concentration / mean

Distribution parameters are automatically broadcast in all functions; see examples for details.

Samples of this distribution are reparameterized (pathwise differentiable). The derivatives are computed using the approach described in (Figurnov et al., 2018).

Examples

import tensorflow_probability as tfp
tfd = tfp.distributions

dist = tfd.Gamma(concentration=3.0, rate=2.0)
dist2 = tfd.Gamma(concentration=[3.0, 4.0], rate=[2.0, 3.0])

Compute the gradients of samples w.r.t. the parameters:

concentration = tf.constant(3.0)
rate = tf.constant(2.0)
dist = tfd.Gamma(concentration, rate)
samples = dist.sample(5)  # Shape [5]
loss = tf.reduce_mean(tf.square(samples))  # Arbitrary loss function
# Unbiased stochastic gradients of the loss function
grads = tf.gradients(loss, [concentration, rate])

References:

Implicit Reparameterization Gradients: Figurnov et al., 2018 (pdf)