View source on GitHub
|
Resets the tracked memory stats for the chosen device.
tf.config.experimental.reset_memory_stats(
device
)
This function sets the tracked peak memory for a device to the device's current memory usage. This allows you to measure the peak memory usage for a specific part of your program. For example:
if tf.config.list_physical_devices('GPU'):# Sets the peak memory to the current memory.tf.config.experimental.reset_memory_stats('GPU:0')# Creates the first peak memory usage.x1 = tf.ones(1000 * 1000, dtype=tf.float64)del x1 # Frees the memory referenced by `x1`.peak1 = tf.config.experimental.get_memory_info('GPU:0')['peak']# Sets the peak memory to the current memory again.tf.config.experimental.reset_memory_stats('GPU:0')# Creates the second peak memory usage.x2 = tf.ones(1000 * 1000, dtype=tf.float32)del x2peak2 = tf.config.experimental.get_memory_info('GPU:0')['peak']assert peak2 < peak1 # tf.float32 consumes less memory than tf.float64.
Currently only supports GPU and TPU. If called on a CPU device, an exception will be raised.
Args | |
|---|---|
device
|
Device string to reset the memory stats, e.g. "GPU:0", "TPU:0".
See https://www.tensorflow.org/api_docs/python/tf/device for specifying
device strings.
|
View source on GitHub