|  View source on GitHub | 
Computes dropout: randomly sets elements to zero to prevent overfitting.
tf.nn.dropout(
    x, rate, noise_shape=None, seed=None, name=None
)
Used in the notebooks
| Used in the guide | 
|---|
See also: tf.keras.layers.Dropout for a dropout layer.
Dropout is useful for regularizing DNN models. Inputs elements are randomly set to zero (and the other elements are rescaled). This encourages each node to be independently useful, as it cannot rely on the output of other nodes.
More precisely: With probability rate elements of x are set to 0.
The remaining elements are scaled up by 1.0 / (1 - rate), so that the
expected value is preserved.
tf.random.set_seed(0)x = tf.ones([3,5])tf.nn.dropout(x, rate = 0.5, seed = 1).numpy()array([[2., 0., 0., 2., 2.],[2., 2., 2., 2., 2.],[2., 0., 2., 0., 2.]], dtype=float32)
tf.random.set_seed(0)x = tf.ones([3,5])tf.nn.dropout(x, rate = 0.8, seed = 1).numpy()array([[0., 0., 0., 5., 5.],[0., 5., 0., 5., 0.],[5., 0., 5., 0., 5.]], dtype=float32)
tf.nn.dropout(x, rate = 0.0) == x<tf.Tensor: shape=(3, 5), dtype=bool, numpy=array([[ True, True, True, True, True],[ True, True, True, True, True],[ True, True, True, True, True]])>
By default, each element is kept or dropped independently.  If noise_shape
is specified, it must be
broadcastable
to the shape of x, and only dimensions with noise_shape[i] == shape(x)[i]
will make independent decisions. This is useful for dropping whole
channels from an image or sequence. For example:
tf.random.set_seed(0)x = tf.ones([3,10])tf.nn.dropout(x, rate = 2/3, noise_shape=[1,10], seed=1).numpy()array([[0., 0., 0., 3., 3., 0., 3., 3., 3., 0.],[0., 0., 0., 3., 3., 0., 3., 3., 3., 0.],[0., 0., 0., 3., 3., 0., 3., 3., 3., 0.]], dtype=float32)
| Args | |
|---|---|
| x | A floating point tensor. | 
| rate | A scalar Tensorwith the same type as x. The probability
that each element is dropped. For example, setting rate=0.1 would drop
10% of input elements. | 
| noise_shape | A 1-D integer Tensor, representing the
shape for randomly generated keep/drop flags. | 
| seed | A Python integer. Used to create random seeds. See tf.random.set_seedfor behavior. | 
| name | A name for this operation (optional). | 
| Returns | |
|---|---|
| A Tensor of the same shape of x. | 
| Raises | |
|---|---|
| ValueError | If rateis not in[0, 1)or ifxis not a floating point
tensor.rate=1is disallowed, because the output would be all zeros,
which is likely not what was intended. |