|  View source on GitHub | 
Initializer that generates a truncated normal distribution.
Inherits From: Initializer
tf.keras.initializers.TruncatedNormal(
    mean=0.0, stddev=0.05, seed=None
)
Used in the notebooks
| Used in the tutorials | 
|---|
The values generated are similar to values from a
RandomNormal initializer, except that values more
than two standard deviations from the mean are
discarded and re-drawn.
Examples:
# Standalone usage:initializer = TruncatedNormal(mean=0., stddev=1.)values = initializer(shape=(2, 2))
# Usage in a Keras layer:initializer = TruncatedNormal(mean=0., stddev=1.)layer = Dense(3, kernel_initializer=initializer)
Methods
clone
clone()
from_config
@classmethodfrom_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
| Args | |
|---|---|
| config | A Python dictionary, the output of get_config(). | 
| Returns | |
|---|---|
| An Initializerinstance. | 
get_config
get_config()
Returns the initializer's configuration as a JSON-serializable dict.
| Returns | |
|---|---|
| A JSON-serializable Python dict. | 
__call__
__call__(
    shape, dtype=None
)
Returns a tensor object initialized as specified by the initializer.
| Args | |
|---|---|
| shape | Shape of the tensor. | 
| dtype | Optional dtype of the tensor. |