|  View source on GitHub | 
Instantiates the EfficientNetB1 architecture.
tf.keras.applications.EfficientNetB1(
    include_top=True,
    weights='imagenet',
    input_tensor=None,
    input_shape=None,
    pooling=None,
    classes=1000,
    classifier_activation='softmax',
    **kwargs
)
Reference:
This function returns a Keras image classification model, optionally loaded with weights pre-trained on ImageNet.
For image classification use cases, see this page for detailed examples.
For transfer learning use cases, make sure to read the guide to transfer learning & fine-tuning.
| Args | |
|---|---|
| include_top | Whether to include the fully-connected
layer at the top of the network. Defaults to True. | 
| weights | One of None(random initialization),"imagenet"(pre-training on ImageNet),
or the path to the weights file to be loaded.
Defaults to"imagenet". | 
| input_tensor | Optional Keras tensor
(i.e. output of layers.Input())
to use as image input for the model. | 
| input_shape | Optional shape tuple, only to be specified
if include_topis False.
It should have exactly 3 inputs channels. | 
| pooling | Optional pooling mode for feature extraction
when include_topisFalse. Defaults toNone.
 | 
| classes | Optional number of classes to classify images
into, only to be specified if include_topis True, and
if noweightsargument is specified. 1000 is how many
ImageNet classes there are. Defaults to1000. | 
| classifier_activation | A stror callable. The activation function to use
on the "top" layer. Ignored unlessinclude_top=True. Setclassifier_activation=Noneto return the logits of the "top" layer.
Defaults to'softmax'.
When loading pretrained weights,classifier_activationcan only
beNoneor"softmax". | 
| Returns | |
|---|---|
| A model instance. |