View source on GitHub
  
 | 
Task object for tf-ranking BERT.
Inherits From: RankingTask
tfr.extension.premade.TFRBertTask(
    params,
    label_spec: Tuple[str, tf.io.FixedLenFeature] = None,
    logging_dir: Optional[str] = None,
    name: Optional[str] = None,
    **kwargs
)
Attributes | |
|---|---|
logging_dir
 | 
|
name
 | 
Returns the name of this module as passed or determined in the ctor. | 
name_scope
 | 
Returns a tf.name_scope instance for this class.
 | 
non_trainable_variables
 | 
Sequence of non-trainable variables owned by this module and its submodules. | 
submodules
 | 
Sequence of all sub-modules.
 Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on). 
  | 
task_config
 | 
|
trainable_variables
 | 
Sequence of trainable variables owned by this module and its submodules. | 
variables
 | 
Sequence of variables owned by this module and its submodules. | 
Methods
aggregate_logs
aggregate_logs(
    state=None, step_outputs=None
)
Aggregates over logs. This runs on CPU in eager mode.
build_inputs
build_inputs(
    params, input_context=None
)
Returns tf.data.Dataset for tf-ranking BERT task.
build_losses
build_losses(
    labels, model_outputs, aux_losses=None
) -> tf.Tensor
Standard interface to compute losses.
| Args | |
|---|---|
labels
 | 
optional label tensors. | 
model_outputs
 | 
a nested structure of output tensors. | 
aux_losses
 | 
auxiliary loss tensors, i.e. losses in keras.Model.
 | 
| Returns | |
|---|---|
| The total loss tensor. | 
build_metrics
build_metrics(
    training=None
)
Gets streaming metrics for training/validation.
build_model
build_model()
[Optional] Creates model architecture.
| Returns | |
|---|---|
| A model instance. | 
create_optimizer
@classmethodcreate_optimizer( optimizer_config: OptimizationConfig, runtime_config: Optional[RuntimeConfig] = None, dp_config: Optional[DifferentialPrivacyConfig] = None )
Creates an TF optimizer from configurations.
| Args | |
|---|---|
optimizer_config
 | 
the parameters of the Optimization settings. | 
runtime_config
 | 
the parameters of the runtime. | 
dp_config
 | 
the parameter of differential privacy. | 
| Returns | |
|---|---|
| A tf.optimizers.Optimizer object. | 
inference_step
inference_step(
    inputs, model: tf.keras.Model
)
Performs the forward step.
With distribution strategies, this method runs on devices.
| Args | |
|---|---|
inputs
 | 
a dictionary of input tensors. | 
model
 | 
the keras.Model. | 
| Returns | |
|---|---|
| Model outputs. | 
initialize
initialize(
    model
)
Load a pretrained checkpoint (if exists) and then train from iter 0.
process_compiled_metrics
process_compiled_metrics(
    compiled_metrics, labels, model_outputs
)
Process and update compiled_metrics.
call when using compile/fit API.
| Args | |
|---|---|
compiled_metrics
 | 
the compiled metrics (model.compiled_metrics). | 
labels
 | 
a tensor or a nested structure of tensors. | 
model_outputs
 | 
a tensor or a nested structure of tensors. For example, output of the keras model built by self.build_model. | 
process_metrics
process_metrics(
    metrics, labels, model_outputs
)
Process and update metrics.
Called when using custom training loop API.
| Args | |
|---|---|
metrics
 | 
a nested structure of metrics objects. The return of function self.build_metrics. | 
labels
 | 
a tensor or a nested structure of tensors. | 
model_outputs
 | 
a tensor or a nested structure of tensors. For example, output of the keras model built by self.build_model. | 
**kwargs
 | 
other args. | 
reduce_aggregated_logs
reduce_aggregated_logs(
    aggregated_logs, global_step=None
)
Calculates aggregated metrics and writes predictions to csv.
train_step
train_step(
    inputs,
    model: tf.keras.Model,
    optimizer: tf.keras.optimizers.Optimizer,
    metrics
)
Does forward and backward.
With distribution strategies, this method runs on devices.
| Args | |
|---|---|
inputs
 | 
a dictionary of input tensors. | 
model
 | 
the model, forward pass definition. | 
optimizer
 | 
the optimizer for this training step. | 
metrics
 | 
a nested structure of metrics objects. | 
| Returns | |
|---|---|
| A dictionary of logs. | 
validation_step
validation_step(
    inputs, model: tf.keras.Model, metrics=None
)
Validation step.
With distribution strategies, this method runs on devices.
| Args | |
|---|---|
inputs
 | 
a dictionary of input tensors. | 
model
 | 
the keras.Model. | 
metrics
 | 
a nested structure of metrics objects. | 
| Returns | |
|---|---|
| A dictionary of logs. | 
with_name_scope
@classmethodwith_name_scope( method )
Decorator to automatically enter the module name scope.
class MyModule(tf.Module):@tf.Module.with_name_scopedef __call__(self, x):if not hasattr(self, 'w'):self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))return tf.matmul(x, self.w)
Using the above module would produce tf.Variables and tf.Tensors whose
names included the module name:
mod = MyModule()mod(tf.ones([1, 2]))<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>mod.w<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,numpy=..., dtype=float32)>
| Args | |
|---|---|
method
 | 
The method to wrap. | 
| Returns | |
|---|---|
| The original method wrapped such that it enters the module's name scope. | 
Class Variables | |
|---|---|
| loss | 
'loss'
 | 
    View source on GitHub