tfr.keras.losses.LabelDiffLambdaWeight
Stay organized with collections
Save and categorize content based on your preferences.
Keras serializable class for LabelDiffLambdaWeight.
tfr.keras.losses.LabelDiffLambdaWeight(
**kwargs
)
Methods
get_config
View source
get_config() -> Dict[str, Any]
individual_weights
View source
individual_weights(
labels, ranks
)
Returns the weight Tensor
for individual examples.
Args |
labels
|
A dense Tensor of labels with shape [batch_size, list_size].
|
ranks
|
A dense Tensor of ranks with the same shape as labels that are
sorted by logits.
|
Returns |
A Tensor that can weight individual examples.
|
pair_weights
View source
pair_weights(
labels, ranks
)
Returns the absolute label difference for each pair.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-08-18 UTC.
[null,null,["Last updated 2023-08-18 UTC."],[],[],null,["# tfr.keras.losses.LabelDiffLambdaWeight\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/ranking/blob/v0.5.3/tensorflow_ranking/python/keras/losses.py#L112-L120) |\n\nKeras serializable class for LabelDiffLambdaWeight. \n\n tfr.keras.losses.LabelDiffLambdaWeight(\n **kwargs\n )\n\nMethods\n-------\n\n### `get_config`\n\n[View source](https://github.com/tensorflow/ranking/blob/v0.5.3/tensorflow_ranking/python/keras/losses.py#L119-L120) \n\n get_config() -\u003e Dict[str, Any]\n\n### `individual_weights`\n\n[View source](https://github.com/tensorflow/ranking/blob/v0.5.3/tensorflow_ranking/python/losses_impl.py#L195-L207) \n\n individual_weights(\n labels, ranks\n )\n\nReturns the weight `Tensor` for individual examples.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|--------------------------------------------------------------------------------------|\n| `labels` | A dense `Tensor` of labels with shape \\[batch_size, list_size\\]. |\n| `ranks` | A dense `Tensor` of ranks with the same shape as `labels` that are sorted by logits. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A `Tensor` that can weight individual examples. ||\n\n\u003cbr /\u003e\n\n### `pair_weights`\n\n[View source](https://github.com/tensorflow/ranking/blob/v0.5.3/tensorflow_ranking/python/losses_impl.py#L213-L216) \n\n pair_weights(\n labels, ranks\n )\n\nReturns the absolute label difference for each pair."]]