tfr.keras.losses.MeanSquaredLoss
Stay organized with collections
Save and categorize content based on your preferences.
Computes mean squared loss between y_true
and y_pred
.
tfr.keras.losses.MeanSquaredLoss(
reduction: tf.losses.Reduction = tf.losses.Reduction.AUTO,
name: Optional[str] = None,
ragged: bool = False
)
loss = (y_true - y_pred)**2
Standalone usage:
y_true = [[1., 0.]]
y_pred = [[0.6, 0.8]]
loss = tfr.keras.losses.MeanSquaredLoss()
loss(y_true, y_pred).numpy()
0.4
# Using ragged tensors
y_true = tf.ragged.constant([[1., 0.], [0., 1., 0.]])
y_pred = tf.ragged.constant([[0.6, 0.8], [0.5, 0.8, 0.4]])
loss = tfr.keras.losses.MeanSquaredLoss(ragged=True)
loss(y_true, y_pred).numpy()
0.20833336
Usage with the compile()
API:
model.compile(optimizer='sgd', loss=tfr.keras.losses.MeanSquaredLoss())
Definition:
\[
\mathcal{L}(\{y\}, \{s\}) = \sum_i (y_i - s_i)^{2}
\]
Args |
reduction
|
(Optional) The tf.keras.losses.Reduction to use (see
tf.keras.losses.Loss ).
|
name
|
(Optional) The name for the op.
|
ragged
|
(Optional) If True, this loss will accept ragged tensors. If
False, this loss will accept dense tensors.
|
Methods
from_config
@classmethod
from_config(
config
)
Instantiates a Loss
from its config (output of get_config()
).
Args |
config
|
Output of get_config() .
|
get_config
View source
get_config() -> Dict[str, Any]
Returns the config dictionary for a Loss
instance.
__call__
View source
__call__(
y_true: tfr.keras.model.TensorLike
,
y_pred: tfr.keras.model.TensorLike
,
sample_weight: Optional[utils.TensorLike] = None
) -> tf.Tensor
See tf.keras.losses.Loss.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-10-20 UTC.
[null,null,["Last updated 2023-10-20 UTC."],[],[],null,["# tfr.keras.losses.MeanSquaredLoss\n\n|----------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/ranking/blob/v0.5.3/tensorflow_ranking/python/keras/losses.py#L1435-L1486) |\n\nComputes mean squared loss between `y_true` and `y_pred`. \n\n tfr.keras.losses.MeanSquaredLoss(\n reduction: tf.losses.Reduction = tf.losses.Reduction.AUTO,\n name: Optional[str] = None,\n ragged: bool = False\n )\n\n loss = (y_true - y_pred)**2\n\n#### Standalone usage:\n\n y_true = [[1., 0.]]\n y_pred = [[0.6, 0.8]]\n loss = tfr.keras.losses.MeanSquaredLoss()\n loss(y_true, y_pred).numpy()\n 0.4\n\n # Using ragged tensors\n y_true = tf.ragged.constant([[1., 0.], [0., 1., 0.]])\n y_pred = tf.ragged.constant([[0.6, 0.8], [0.5, 0.8, 0.4]])\n loss = tfr.keras.losses.MeanSquaredLoss(ragged=True)\n loss(y_true, y_pred).numpy()\n 0.20833336\n\nUsage with the `compile()` API: \n\n model.compile(optimizer='sgd', loss=tfr.keras.losses.MeanSquaredLoss())\n\n#### Definition:\n\n\\\\\\[\n\\\\mathcal{L}(\\\\{y\\\\}, \\\\{s\\\\}) = \\\\sum_i (y_i - s_i)\\^{2}\n\\\\\\]\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `reduction` | (Optional) The [`tf.keras.losses.Reduction`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/Reduction) to use (see [`tf.keras.losses.Loss`](https://www.tensorflow.org/api_docs/python/tf/keras/losses/Loss)). |\n| `name` | (Optional) The name for the op. |\n| `ragged` | (Optional) If True, this loss will accept ragged tensors. If False, this loss will accept dense tensors. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `from_config`\n\n @classmethod\n from_config(\n config\n )\n\nInstantiates a `Loss` from its config (output of `get_config()`).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|---------------------------|\n| `config` | Output of `get_config()`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A `Loss` instance. ||\n\n\u003cbr /\u003e\n\n### `get_config`\n\n[View source](https://github.com/tensorflow/ranking/blob/v0.5.3/tensorflow_ranking/python/keras/losses.py#L280-L283) \n\n get_config() -\u003e Dict[str, Any]\n\nReturns the config dictionary for a `Loss` instance.\n\n### `__call__`\n\n[View source](https://github.com/tensorflow/ranking/blob/v0.5.3/tensorflow_ranking/python/keras/losses.py#L262-L270) \n\n __call__(\n y_true: ../../../tfr/keras/model/TensorLike,\n y_pred: ../../../tfr/keras/model/TensorLike,\n sample_weight: Optional[utils.TensorLike] = None\n ) -\u003e tf.Tensor\n\nSee tf.keras.losses.Loss."]]