View source on GitHub
|
Computes the Ordinal loss between y_true and y_pred.
tfr.keras.losses.OrdinalLoss(
reduction: tf.losses.Reduction = tf.losses.Reduction.AUTO,
name: Optional[str] = None,
ragged: bool = False,
ordinal_size: int = 1,
use_fraction_label: bool = False
)
In ordinal loss, y_pred is a 3D tensor with the last dimension equals to ordinal_size.
loss = -\sum_i=0^ordinal_size-1 I_{y_true > i} log(sigmoid(y_pred[i])) +
I_{y_true <= i} log(1-sigmoid(y_pred[i]))
Standalone usage:
y_true = [[1., 0.]]y_pred = [[[0.6, 0.2], [0.8, 0.3]]]loss = tfr.keras.losses.OrdinalLoss(ordinal_size=2)loss(y_true, y_pred).numpy()1.6305413
# Using ragged tensorsy_true = tf.ragged.constant([[2., 1.], [0.]])y_pred = tf.ragged.constant([[[0.6, 0.2], [0.8, 0.3]], [[0., -0.2]]])loss = tfr.keras.losses.OrdinalLoss(ordinal_size=2, ragged=True)loss(y_true, y_pred).numpy()0.88809216
Usage with the compile() API:
model.compile(optimizer='sgd',
loss=tfr.keras.losses.OrdinalLoss(ordinal_size=2))
Definition:
\[ \mathcal{L}(\{y\}, \{s\}) = - \sum_i\sum_{j=0}^{m-1} I_{y_i > j} \log(\text{sigmoid}(s_{i,j})) + I_{y_i \leq j} \log(1 - \text{sigmoid}(s_{i,j})) \]
Args | |
|---|---|
reduction
|
Type of tf.keras.losses.Reduction to apply to
loss. Default value is AUTO. AUTO indicates that the
reduction option will be determined by the usage context. For
almost all cases this defaults to SUM_OVER_BATCH_SIZE. When
used under a tf.distribute.Strategy, except via
Model.compile() and Model.fit(), using AUTO or
SUM_OVER_BATCH_SIZE will raise an error. Please see this
custom training tutorial
for more details.
|
name
|
Optional name for the instance. |
Methods
from_config
@classmethodfrom_config( config )
Instantiates a Loss from its config (output of get_config()).
| Args | |
|---|---|
config
|
Output of get_config().
|
| Returns | |
|---|---|
A Loss instance.
|
get_config
get_config() -> Dict[str, Any]
Returns the config dictionary for a Loss instance.
__call__
__call__(
y_true: tfr.keras.model.TensorLike,
y_pred: tfr.keras.model.TensorLike,
sample_weight: Optional[utils.TensorLike] = None
) -> tf.Tensor
See tf.keras.losses.Loss.
View source on GitHub