View source on GitHub
|
Computes Softmax cross-entropy loss between y_true and y_pred.
tfr.keras.losses.SoftmaxLoss(
reduction: tf.losses.Reduction = tf.losses.Reduction.AUTO,
name: Optional[str] = None,
lambda_weight: Optional[losses_impl._LambdaWeight] = None,
temperature: float = 1.0,
ragged: bool = False
)
For each list of scores s in y_pred and list of labels y in y_true:
loss = - sum_i y_i * log(softmax(s_i))
Standalone usage:
y_true = [[1., 0.]]y_pred = [[0.6, 0.8]]loss = tfr.keras.losses.SoftmaxLoss()loss(y_true, y_pred).numpy()0.7981389
# Using ragged tensorsy_true = tf.ragged.constant([[1., 0.], [0., 1., 0.]])y_pred = tf.ragged.constant([[0.6, 0.8], [0.5, 0.8, 0.4]])loss = tfr.keras.losses.SoftmaxLoss(ragged=True)loss(y_true, y_pred).numpy()0.83911896
Usage with the compile() API:
model.compile(optimizer='sgd', loss=tfr.keras.losses.SoftmaxLoss())
Definition:
\[ \mathcal{L}(\{y\}, \{s\}) = - \sum_i y_i \log\left(\frac{\exp(s_i)}{\sum_j \exp(s_j)}\right) \]
Args | |
|---|---|
reduction
|
(Optional) The tf.keras.losses.Reduction to use (see
tf.keras.losses.Loss).
|
name
|
(Optional) The name for the op. |
lambda_weight
|
(Optional) A lambdaweight to apply to the loss. Can be one
of tfr.keras.losses.DCGLambdaWeight,
tfr.keras.losses.NDCGLambdaWeight, or,
tfr.keras.losses.PrecisionLambdaWeight.
|
temperature
|
(Optional) The temperature to use for scaling the logits. |
ragged
|
(Optional) If True, this loss will accept ragged tensors. If False, this loss will accept dense tensors. |
Methods
from_config
@classmethodfrom_config( config, custom_objects=None )
Instantiates a Loss from its config (output of get_config()).
| Args | |
|---|---|
config
|
Output of get_config().
|
| Returns | |
|---|---|
A Loss instance.
|
get_config
get_config() -> Dict[str, Any]
Returns the config dictionary for a Loss instance.
__call__
__call__(
y_true: tfr.keras.model.TensorLike,
y_pred: tfr.keras.model.TensorLike,
sample_weight: Optional[utils.TensorLike] = None
) -> tf.Tensor
See _RankingLoss.
View source on GitHub