|  View source on GitHub | 
Interface for ranking pipeline to train a tf.keras.Model.
The AbstractPipeline class is an abstract class to train and validate a
ranking model in tfr.keras.
To be implemented by subclasses:
- build_loss(): Contains the logic to build a- tf.keras.losses.Lossor a dict or list of- tf.keras.losses.Losss to be optimized in training.
- build_metrics(): Contains the logic to build a list or dict of- tf.keras.metrics.Metrics to monitor and evaluate the training.
- build_weighted_metrics(): Contains the logic to build a list or dict of- tf.keras.metrics.Metrics which will take the weights.
- train_and_validate(): Contrains the main training pipeline for training and validation.
Example subclass implementation:
class BasicPipeline(AbstractPipeline):
  def __init__(self, model, train_data, valid_data, name=None):
    self._model = model
    self._train_data = train_data
    self._valid_data = valid_data
    self._name = name
  def build_loss(self):
    return tfr.keras.losses.get('softmax_loss')
  def build_metrics(self):
    return [
        tfr.keras.metrics.get(
            'ndcg', topn=topn, name='ndcg_{}'.format(topn)
        ) for topn in [1, 5, 10]
    ]
  def build_weighted_metrics(self):
    return [
        tfr.keras.metrics.get(
            'ndcg', topn=topn, name='weighted_ndcg_{}'.format(topn)
        ) for topn in [1, 5, 10]
    ]
  def train_and_validate(self, *arg, **kwargs):
    self._model.compile(
        optimizer=tf.keras.optimizers.SGD(learning_rate=0.001),
        loss=self.build_loss(),
        metrics=self.build_metrics(),
        weighted_metrics=self.build_weighted_metrics())
    self._model.fit(
        x=self._train_data,
        epochs=100,
        validation_data=self._valid_data)
Methods
build_loss
@abc.abstractmethodbuild_loss() -> Any
Returns the loss for model.compile.
Example usage:
pipeline = BasicPipeline(model, train_data, valid_data)
loss = pipeline.build_loss()
| Returns | |
|---|---|
| A tf.keras.losses.Lossor a dict or list oftf.keras.losses.Loss. | 
build_metrics
@abc.abstractmethodbuild_metrics() -> Any
Returns a list of ranking metrics for model.compile().
Example usage:
pipeline = BasicPipeline(model, train_data, valid_data)
metrics = pipeline.build_metrics()
| Returns | |
|---|---|
| A list or a dict of tf.keras.metrics.Metrics. | 
build_weighted_metrics
@abc.abstractmethodbuild_weighted_metrics() -> Any
Returns a list of weighted ranking metrics for model.compile.
Example usage:
pipeline = BasicPipeline(model, train_data, valid_data)
weighted_metrics = pipeline.build_weighted_metrics()
| Returns | |
|---|---|
| A list or a dict of tf.keras.metrics.Metrics. | 
train_and_validate
@abc.abstractmethodtrain_and_validate( *arg, **kwargs ) -> Any
Constructs and runs the training pipeline.
Example usage:
pipeline = BasicPipeline(model, train_data, valid_data)
pipeline.train_and_validate()
| Args | |
|---|---|
| *arg | arguments that might be used in the training pipeline. | 
| **kwargs | keyword arguments that might be used in the training pipeline. | 
| Returns | |
|---|---|
| None or a trained tf.keras.Modelor a path to a savedtf.keras.Model. |