|  View source on GitHub | 
Transformation which skip the decoding entirelly.
Inherits From: Decoder
tfds.decode.SkipDecoding()
Example of usage:
ds = tfds.load(
    'imagenet2012',
    split='train',
    decoders={
        'image': tfds.decode.SkipDecoding(),
    }
)
for ex in ds.take(1):
  assert ex['image'].dtype == tf.string
| Attributes | |
|---|---|
| dtype | Returns the dtypeafter decoding. | 
| feature | |
Methods
decode_batch_example
decode_batch_example(
    serialized_example
)
See FeatureConnector.decode_batch_example for details.
decode_example
decode_example(
    serialized_example
)
Forward the serialized feature field.
decode_example_np
decode_example_np(
    serialized_example
)
Forward the serialized feature field.
decode_ragged_example
decode_ragged_example(
    serialized_example
)
See FeatureConnector.decode_ragged_example for details.
setup
setup(
    *, feature
)
Transformation contructor.
The initialization of decode object is deferred because the objects only know the builder/features on which it is used after it has been constructed, the initialization is done in this function.
| Args | |
|---|---|
| feature | tfds.features.FeatureConnector, the feature to which is applied
this transformation. |