tfds.features.FeaturesDict

Composite FeatureConnector; each feature in dict has its own connector.

The encode/decode method of the spec feature will recursively encode/decode every sub-connector given on the constructor. Other features can inherit from this class and call super() in order to get nested container.

Example:

For DatasetInfo:

features = tfds.features.FeaturesDict({
    'input': tfds.features.Image(),
    'output': tf.int32,
})

At generation time:

for image, label in generate_examples:
  yield {
      'input': image,
      'output': label
  }

At tf.data.Dataset() time:

for example in tfds.load(...):
  tf_input = example['input']
  tf_output = example['output']

For nested features, the FeaturesDict will internally flatten the keys for the features and the conversion to tf.train.Example. Indeed, the tf.train.Example proto do not support nested feature, while tf.data.Dataset does. But internal transformation should be invisible to the user.

Example:

tfds.features.FeaturesDict({
    'input': tf.int32,
    'target': {
        'height': tf.int32,
        'width': tf.int32,
    },
})

Will internally store the data as:

{
    'input': tf.io.FixedLenFeature(shape=(), dtype=tf.int32),
    'target/height': tf.io.FixedLenFeature(shape=(), dtype=tf.int32),
    'target/width': tf.io.FixedLenFeature(shape=(), dtype=tf.int32),
}

feature_dict (dict): Dictionary containing the feature connectors of a example. The keys should correspond to the data dict as returned by tf.data.Dataset(). Types (tf.int32,...) and dicts will automatically be converted into FeatureConnector.

ValueError If one of the given features is not recognized

dtype Return the dtype (or dict of dtype) of this FeatureConnector.
shape Return the shape (or dict of shape) of this FeatureConnector.

Methods

decode_batch_example

View source

Decode multiple features batched in a single tf.Tensor.

This function is used to decode features wrapped in tfds.features.Sequence(). By default, this function apply decode_example on each individual elements using tf.map_fn. However, for optimization, features can overwrite this method to apply a custom batch decoding.

Args
tfexample_data Same tf.Tensor inputs as decode_example, but with and additional first dimension for the sequence length.

Returns
tensor_data Tensor or dictionary of tensor, output of the tf.data.Dataset object

decode_example

View source

Decode the serialize examples.

Args
serialized_example Nested dict of tf.Tensor
decoders Nested dict of Decoder objects which allow to customize the decoding. The structure should match the feature structure, but only customized feature keys need to be present. See the guide for more info.

Returns
example Nested dict containing the decoded nested examples.

decode_ragged_example

View source

Decode nested features from a tf.RaggedTensor.

This function is used to decode features wrapped in nested tfds.features.Sequence(). By default, this function apply decode_batch_example on the flat values of the ragged tensor. For optimization, features can overwrite this method to apply a custom batch decoding.

Args
tfexample_data tf.RaggedTensor inputs containing the nested encoded examples.

Returns
tensor_data The decoded tf.RaggedTensor or dictionary of tensor, output of the tf.data.Dataset object

encode_example

View source

See base class for details.

get_serialized_info

View source

See base class for details.

get_tensor_info

View source

See base class for details.

items

View source

keys

View source

load_metadata

View source

See base class for details.

save_metadata

View source

See base class for details.

values

View source

__contains__

View source

__getitem__

View source

Return the feature associated with the key.

__iter__

View source

__len__

View source