View source on GitHub |
Abstract base class for feature types.
tfds.features.FeatureConnector(
*, doc: DocArg = None
)
This class provides an interface between the way the information is stored on disk, and the way it is presented to the user.
Here is a diagram on how FeatureConnector methods fit into the data generation/reading:
generator => encode_example() => tf_example => decode_example() => data dict
The connector can either get raw or dictionary values as input, depending on the connector type.
Attributes | |
---|---|
doc
|
|
dtype
|
Return the dtype (or dict of dtype) of this FeatureConnector. |
np_dtype
|
|
numpy_dtype
|
|
shape
|
Return the shape (or dict of shape) of this FeatureConnector. |
tf_dtype
|
Methods
catalog_documentation
catalog_documentation() -> List[CatalogFeatureDocumentation]
Returns the feature documentation to be shown in the catalog.
cls_from_name
@classmethod
cls_from_name( python_class_name: str ) -> Type['FeatureConnector']
Returns the feature class for the given Python class.
decode_batch_example
decode_batch_example(
tfexample_data
)
Decode multiple features batched in a single tf.Tensor.
This function is used to decode features wrapped in
tfds.features.Sequence()
.
By default, this function apply decode_example
on each individual
elements using tf.map_fn
. However, for optimization, features can
overwrite this method to apply a custom batch decoding.
Args | |
---|---|
tfexample_data
|
Same tf.Tensor inputs as decode_example , but with and
additional first dimension for the sequence length.
|
Returns | |
---|---|
tensor_data
|
Tensor or dictionary of tensor, output of the tf.data.Dataset object |
decode_example
decode_example(
tfexample_data
)
Decode the feature dict to TF compatible input.
Args | |
---|---|
tfexample_data
|
Data or dictionary of data, as read by the tf-example
reader. It correspond to the tf.Tensor() (or dict of tf.Tensor() )
extracted from the tf.train.Example , matching the info defined in
get_serialized_info() .
|
Returns | |
---|---|
tensor_data
|
Tensor or dictionary of tensor, output of the tf.data.Dataset object |
decode_example_np
decode_example_np(
example_data: type_utils.NpArrayOrScalar
) -> type_utils.NpArrayOrScalar
Encode the feature dict into NumPy-compatible input.
Args | |
---|---|
example_data
|
Value to convert to NumPy. |
Returns | |
---|---|
np_data
|
Data as NumPy-compatible type: either a Python primitive (bytes, int, etc) or a NumPy array. |
decode_ragged_example
decode_ragged_example(
tfexample_data
)
Decode nested features from a tf.RaggedTensor.
This function is used to decode features wrapped in nested
tfds.features.Sequence()
.
By default, this function apply decode_batch_example
on the flat values
of the ragged tensor. For optimization, features can
overwrite this method to apply a custom batch decoding.
Args | |
---|---|
tfexample_data
|
tf.RaggedTensor inputs containing the nested encoded
examples.
|
Returns | |
---|---|
tensor_data
|
The decoded tf.RaggedTensor or dictionary of tensor,
output of the tf.data.Dataset object
|
encode_example
@abc.abstractmethod
encode_example( example_data )
Encode the feature dict into tf-example compatible input.
The input example_data can be anything that the user passed at data generation. For example:
For features:
features={
'image': tfds.features.Image(),
'custom_feature': tfds.features.CustomFeature(),
}
At data generation (in _generate_examples
), if the user yields:
yield {
'image': 'path/to/img.png',
'custom_feature': [123, 'str', lambda x: x+1]
}
Then | |
---|---|
|
Args | |
---|---|
example_data
|
Value or dictionary of values to convert into tf-example compatible data. |
Returns | |
---|---|
tfexample_data
|
Data or dictionary of data to write as tf-example. Data
can be a list or numpy array.
Note that numpy arrays are flattened so it's the feature connector
responsibility to reshape them in decode_example() .
Note that tf.train.Example only supports int64, float32 and string so
the data returned here should be integer, float or string. User type
can be restored in decode_example() .
|
from_config
@classmethod
from_config( root_dir: str ) -> FeatureConnector
Reconstructs the FeatureConnector from the config file.
Usage:
features = FeatureConnector.from_config('path/to/dir')
Args | |
---|---|
root_dir
|
Directory containing the features.json file. |
Returns | |
---|---|
The reconstructed feature instance. |
from_json
@classmethod
from_json( value: Json ) -> FeatureConnector
FeatureConnector factory.
This function should be called from the tfds.features.FeatureConnector
base class. Subclass should implement the from_json_content
.
Example:
feature = tfds.features.FeatureConnector.from_json(
{'type': 'Image', 'content': {'shape': [32, 32, 3], 'dtype': 'uint8'} }
)
assert isinstance(feature, tfds.features.Image)
Args | |
---|---|
value
|
dict(type=, content=) containing the feature to restore. Match
dict returned by to_json .
|
Returns | |
---|---|
The reconstructed FeatureConnector. |
from_json_content
@classmethod
from_json_content( value: Union[Json, message.Message], doc: Optional[DocArg] = None ) -> T
FeatureConnector factory (to overwrite).
Subclasses should overwrite this method. This method is used when importing the feature connector from the config.
This function should not be called directly. FeatureConnector.from_json
should be called instead.
See existing FeatureConnectors for implementation examples.
Args | |
---|---|
value
|
FeatureConnector information represented as either Json or a
Feature proto. The content must match what is returned by
to_json_content .
|
doc
|
Documentation of this feature (e.g. description). |
Returns | |
---|---|
The reconstructed FeatureConnector. |
from_proto
@classmethod
from_proto( feature_proto: feature_pb2.Feature ) -> T
Instantiates a feature from its proto representation.
get_serialized_info
get_serialized_info() -> Union[TensorInfo, Mapping[str, TensorInfo]]
Return the shape/dtype of features after encoding (for the adapter).
The FileAdapter
then use those information to write data on disk.
This function indicates how this feature is encoded on file internally. The DatasetBuilder are written on disk as tf.train.Example proto.
Ex:
return {
'image': tfds.features.TensorInfo(shape=(None,), dtype=np.uint8),
'height': tfds.features.TensorInfo(shape=(), dtype=np.int32),
'width': tfds.features.TensorInfo(shape=(), dtype=np.int32),
}
FeatureConnector which are not containers should return the feature proto directly:
return tfds.features.TensorInfo(shape=(64, 64), np.uint8)
If not defined, the retuned values are automatically deduced from the
get_tensor_info
function.
Returns | |
---|---|
features
|
Either a dict of feature proto object, or a feature proto object |
get_tensor_info
@abc.abstractmethod
get_tensor_info() -> TreeDict[TensorInfo]
Return the tf.Tensor dtype/shape of the feature.
This returns the tensor dtype/shape, as returned by .as_dataset by the
tf.data.Dataset
object.
Ex:
return {
'image': tfds.features.TensorInfo(shape=(None,), dtype=np.uint8),
'height': tfds.features.TensorInfo(shape=(), dtype=np.int32),
'width': tfds.features.TensorInfo(shape=(), dtype=np.int32),
}
FeatureConnector which are not containers should return the feature proto directly:
return tfds.features.TensorInfo(shape=(256, 256), dtype=np.uint8)
Returns | |
---|---|
tensor_info
|
Either a dict of tfds.features.TensorInfo object, or a
tfds.features.TensorInfo
|
get_tensor_spec
get_tensor_spec() -> TreeDict[tf.TensorSpec]
Returns the tf.TensorSpec of this feature (not the element spec!).
Note that the output of this method may not correspond to the element spec of the dataset. For example, currently this method does not support RaggedTensorSpec.
load_metadata
load_metadata(
data_dir: epath.PathLike, feature_name: Optional[str]
)
Restore the feature metadata from disk.
If a dataset is re-loaded and generated files exists on disk, this function will restore the feature metadata from the saved file.
Args | |
---|---|
data_dir
|
path to the dataset folder to which save the info (ex:
~/datasets/cifar10/1.2.0/ )
|
feature_name
|
the name of the feature (from the FeaturesDict key) |
repr_html
repr_html(
ex: np.ndarray
) -> str
Returns the HTML str representation of the object.
repr_html_batch
repr_html_batch(
ex: np.ndarray
) -> str
Returns the HTML str representation of the object (Sequence).
repr_html_ragged
repr_html_ragged(
ex: np.ndarray
) -> str
Returns the HTML str representation of the object (Nested sequence).
save_config
save_config(
root_dir: str
) -> None
Exports the FeatureConnector
to a file.
Args | |
---|---|
root_dir
|
path/to/dir containing the features.json
|
save_metadata
save_metadata(
data_dir: epath.PathLike, feature_name: Optional[str]
) -> None
Save the feature metadata on disk.
This function is called after the data has been generated (by
_download_and_prepare
) to save the feature connector info with the
generated dataset.
Some dataset/features dynamically compute info during
_download_and_prepare
. For instance:
- Labels are loaded from the downloaded data
- Vocabulary is created from the downloaded data
- ImageLabelFolder compute the image dtypes/shape from the manual_dir
After the info have been added to the feature, this function allow to save those additional info to be restored the next time the data is loaded.
By default, this function do not save anything, but sub-classes can overwrite the function.
Args | |
---|---|
data_dir
|
path to the dataset folder to which save the info (ex:
~/datasets/cifar10/1.2.0/ )
|
feature_name
|
the name of the feature (from the FeaturesDict key) |
to_json
to_json() -> Json
Exports the FeatureConnector to Json.
Each feature is serialized as a dict(type=..., content=...)
.
type
: The cannonical name of the feature (module.FeatureName
).content
: is specific to each feature connector and defined into_json_content
. Can contain nested sub-features (like fortfds.features.FeaturesDict
andtfds.features.Sequence
).
For example:
tfds.features.FeaturesDict({
'input': tfds.features.Image(),
'target': tfds.features.ClassLabel(num_classes=10),
})
Is serialized as:
{
"type": "tensorflow_datasets.core.features.features_dict.FeaturesDict",
"content": {
"input": {
"type": "tensorflow_datasets.core.features.image_feature.Image",
"content": {
"shape": [null, null, 3],
"dtype": "uint8",
"encoding_format": "png"
}
},
"target": {
"type":
"tensorflow_datasets.core.features.class_label_feature.ClassLabel",
"content": {
"num_classes": 10
}
}
}
}
Returns | |
---|---|
A dict(type=, content=) . Will be forwarded to from_json when
reconstructing the feature.
|
to_json_content
to_json_content() -> Union[Json, message.Message]
FeatureConnector factory (to overwrite).
This function should be overwritten by the subclass to allow re-importing the feature connector from the config. See existing FeatureConnector for example of implementation.
Returns | |
---|---|
The FeatureConnector metadata in either a dict, or a Feature proto. This
output is used in from_json_content when reconstructing the feature.
|
to_proto
to_proto() -> feature_pb2.Feature
Exports the FeatureConnector to the Feature proto.
For features that have a specific schema defined in a proto, this function needs to be overriden. If there's no specific proto schema, then the feature will be represented using JSON.
Returns | |
---|---|
The feature proto describing this feature. |
Class Variables | |
---|---|
ALIASES |
[]
|