مشاهده در TensorFlow.org | در Google Colab اجرا شود | در GitHub مشاهده کنید | دانلود دفترچه یادداشت | مدل TF Hub را ببینید |
این نوت بوک نحوه دسترسی به ماژول رمزگذار جملات جهانی چندزبانه و استفاده از آن برای شباهت جمله در چندین زبان را نشان می دهد. این ماژول یک فرمت از است ماژول اصلی جهانی رمزگذار .
نوت بوک به شرح زیر تقسیم می شود:
- بخش اول تجسم جملات بین دو زبان را نشان می دهد. این یک تمرین آکادمیک تر است.
- در بخش دوم، نحوه ساخت یک موتور جستجوی معنایی را از نمونهای از مجموعه ویکیپدیا به چندین زبان نشان میدهیم.
نقل قول
مقالات تحقیقاتی که از مدل های بررسی شده در این colab استفاده می کنند باید به موارد زیر اشاره کنند:
رمزگذار جملات چندزبانه جهانی برای بازیابی معنایی
یینفی یانگ، دنیل سر، امین احمد، مندی گو، جکس لاو، نوح کنستانت، گوستاوو هرناندز آبروگو، استیو یوان، کریس تار، یون هسوان سونگ، برایان استروپ و ری کورزویل. 2019. arXiv preprint arXiv:1907.04307
برپایی
این بخش محیطی را برای دسترسی به ماژول رمزگذار جملات جهانی چندزبانه تنظیم می کند و همچنین مجموعه ای از جملات انگلیسی و ترجمه آنها را آماده می کند. در بخش بعد، ماژول چند زبانه استفاده می شود برای محاسبه تشابه در طول زبان.
تنظیم محیط
%%capture
# Install the latest Tensorflow version.
!pip install tensorflow_text
!pip install bokeh
!pip install simpleneighbors[annoy]
!pip install tqdm
واردات و توابع رایج را راه اندازی کنید
import bokeh
import bokeh.models
import bokeh.plotting
import numpy as np
import os
import pandas as pd
import tensorflow.compat.v2 as tf
import tensorflow_hub as hub
from tensorflow_text import SentencepieceTokenizer
import sklearn.metrics.pairwise
from simpleneighbors import SimpleNeighbors
from tqdm import tqdm
from tqdm import trange
def visualize_similarity(embeddings_1, embeddings_2, labels_1, labels_2,
plot_title,
plot_width=1200, plot_height=600,
xaxis_font_size='12pt', yaxis_font_size='12pt'):
assert len(embeddings_1) == len(labels_1)
assert len(embeddings_2) == len(labels_2)
# arccos based text similarity (Yang et al. 2019; Cer et al. 2019)
sim = 1 - np.arccos(
sklearn.metrics.pairwise.cosine_similarity(embeddings_1,
embeddings_2))/np.pi
embeddings_1_col, embeddings_2_col, sim_col = [], [], []
for i in range(len(embeddings_1)):
for j in range(len(embeddings_2)):
embeddings_1_col.append(labels_1[i])
embeddings_2_col.append(labels_2[j])
sim_col.append(sim[i][j])
df = pd.DataFrame(zip(embeddings_1_col, embeddings_2_col, sim_col),
columns=['embeddings_1', 'embeddings_2', 'sim'])
mapper = bokeh.models.LinearColorMapper(
palette=[*reversed(bokeh.palettes.YlOrRd[9])], low=df.sim.min(),
high=df.sim.max())
p = bokeh.plotting.figure(title=plot_title, x_range=labels_1,
x_axis_location="above",
y_range=[*reversed(labels_2)],
plot_width=plot_width, plot_height=plot_height,
tools="save",toolbar_location='below', tooltips=[
('pair', '@embeddings_1 ||| @embeddings_2'),
('sim', '@sim')])
p.rect(x="embeddings_1", y="embeddings_2", width=1, height=1, source=df,
fill_color={'field': 'sim', 'transform': mapper}, line_color=None)
p.title.text_font_size = '12pt'
p.axis.axis_line_color = None
p.axis.major_tick_line_color = None
p.axis.major_label_standoff = 16
p.xaxis.major_label_text_font_size = xaxis_font_size
p.xaxis.major_label_orientation = 0.25 * np.pi
p.yaxis.major_label_text_font_size = yaxis_font_size
p.min_border_right = 300
bokeh.io.output_notebook()
bokeh.io.show(p)
این کد اضافی دیگ بخار است که در آن مدل ML از پیش آموزش دیده را وارد می کنیم که از آن برای رمزگذاری متن در سراسر این دفترچه استفاده می کنیم.
# The 16-language multilingual module is the default but feel free
# to pick others from the list and compare the results.
module_url = 'https://tfhub.dev/google/universal-sentence-encoder-multilingual/3'
model = hub.load(module_url)
def embed_text(input):
return model(input)
شباهت متن بین زبان ها را تجسم کنید
با در دست داشتن جمله های جاسازی شده، می توانیم شباهت معنایی را در زبان های مختلف تجسم کنیم.
محاسبات جاسازی متن
ابتدا مجموعه ای از جملات ترجمه شده به زبان های مختلف را به صورت موازی تعریف می کنیم. سپس، جاسازیها را برای همه جملات خود از قبل محاسبه میکنیم.
# Some texts of different lengths in different languages.
arabic_sentences = ['كلب', 'الجراء لطيفة.', 'أستمتع بالمشي لمسافات طويلة على طول الشاطئ مع كلبي.']
chinese_sentences = ['狗', '小狗很好。', '我喜欢和我的狗一起沿着海滩散步。']
english_sentences = ['dog', 'Puppies are nice.', 'I enjoy taking long walks along the beach with my dog.']
french_sentences = ['chien', 'Les chiots sont gentils.', 'J\'aime faire de longues promenades sur la plage avec mon chien.']
german_sentences = ['Hund', 'Welpen sind nett.', 'Ich genieße lange Spaziergänge am Strand entlang mit meinem Hund.']
italian_sentences = ['cane', 'I cuccioli sono carini.', 'Mi piace fare lunghe passeggiate lungo la spiaggia con il mio cane.']
japanese_sentences = ['犬', '子犬はいいです', '私は犬と一緒にビーチを散歩するのが好きです']
korean_sentences = ['개', '강아지가 좋다.', '나는 나의 개와 해변을 따라 길게 산책하는 것을 즐긴다.']
russian_sentences = ['собака', 'Милые щенки.', 'Мне нравится подолгу гулять по пляжу со своей собакой.']
spanish_sentences = ['perro', 'Los cachorros son agradables.', 'Disfruto de dar largos paseos por la playa con mi perro.']
# Multilingual example
multilingual_example = ["Willkommen zu einfachen, aber", "verrassend krachtige", "multilingüe", "compréhension du langage naturel", "модели.", "大家是什么意思" , "보다 중요한", ".اللغة التي يتحدثونها"]
multilingual_example_in_en = ["Welcome to simple yet", "surprisingly powerful", "multilingual", "natural language understanding", "models.", "What people mean", "matters more than", "the language they speak."]
# Compute embeddings.
ar_result = embed_text(arabic_sentences)
en_result = embed_text(english_sentences)
es_result = embed_text(spanish_sentences)
de_result = embed_text(german_sentences)
fr_result = embed_text(french_sentences)
it_result = embed_text(italian_sentences)
ja_result = embed_text(japanese_sentences)
ko_result = embed_text(korean_sentences)
ru_result = embed_text(russian_sentences)
zh_result = embed_text(chinese_sentences)
multilingual_result = embed_text(multilingual_example)
multilingual_in_en_result = embed_text(multilingual_example_in_en)
تجسم شباهت
با در دست داشتن جاسازیهای متن، میتوانیم محصول نقطهای آنها را برای تجسم شباهت جملات بین زبانها در نظر بگیریم. رنگ تیره تر نشان می دهد که جاسازی ها از نظر معنایی مشابه هستند.
شباهت چند زبانه
visualize_similarity(multilingual_in_en_result, multilingual_result,
multilingual_example_in_en, multilingual_example, "Multilingual Universal Sentence Encoder for Semantic Retrieval (Yang et al., 2019)")
شباهت انگلیسی-عربی
visualize_similarity(en_result, ar_result, english_sentences, arabic_sentences, 'English-Arabic Similarity')
شباهت انگلیسی و روسی
visualize_similarity(en_result, ru_result, english_sentences, russian_sentences, 'English-Russian Similarity')
شباهت انگلیسی-اسپانیایی
visualize_similarity(en_result, es_result, english_sentences, spanish_sentences, 'English-Spanish Similarity')
شباهت انگلیسی-ایتالیایی
visualize_similarity(en_result, it_result, english_sentences, italian_sentences, 'English-Italian Similarity')
شباهت ایتالیایی-اسپانیایی
visualize_similarity(it_result, es_result, italian_sentences, spanish_sentences, 'Italian-Spanish Similarity')
شباهت انگلیسی و چینی
visualize_similarity(en_result, zh_result, english_sentences, chinese_sentences, 'English-Chinese Similarity')
شباهت انگلیسی-کره ای
visualize_similarity(en_result, ko_result, english_sentences, korean_sentences, 'English-Korean Similarity')
شباهت چینی و کره ای
visualize_similarity(zh_result, ko_result, chinese_sentences, korean_sentences, 'Chinese-Korean Similarity')
و بیشتر...
مثال های بالا می توان به هر دو زبان از انگلیسی، عربی، چینی، هلندی، فرانسوی، آلمانی، ایتالیایی، ژاپنی، کره ای، لهستانی، پرتغالی، روسی، اسپانیایی، تایلندی و ترکیه افزایش یافته است. کد نویسی مبارک!
ایجاد یک موتور جستجوی معنایی-شباهت چند زبانه
در حالی که در مثال قبلی تعدادی جملات را تجسم کردیم، در این بخش یک نمایه جستجوی معنایی از حدود 200000 جمله از یک مجموعه ویکیپدیا ایجاد میکنیم. حدود نیمی از آنها به زبان انگلیسی و نیمی دیگر به زبان اسپانیایی برای نشان دادن قابلیت های چند زبانه رمزگذار جملات جهانی خواهد بود.
دانلود داده ها به فهرست
اول، ما جملات اخبار از دانلود در تقسیم عددی بر مضرب زبان اخبار تفسیر جسم [1]. بدون از دست دادن کلیت، این رویکرد باید برای نمایه سازی بقیه زبان های پشتیبانی شده نیز کار کند.
برای سرعت بخشیدن به نسخه ی نمایشی، ما به 1000 جمله در هر زبان محدود می کنیم.
corpus_metadata = [
('ar', 'ar-en.txt.zip', 'News-Commentary.ar-en.ar', 'Arabic'),
('zh', 'en-zh.txt.zip', 'News-Commentary.en-zh.zh', 'Chinese'),
('en', 'en-es.txt.zip', 'News-Commentary.en-es.en', 'English'),
('ru', 'en-ru.txt.zip', 'News-Commentary.en-ru.ru', 'Russian'),
('es', 'en-es.txt.zip', 'News-Commentary.en-es.es', 'Spanish'),
]
language_to_sentences = {}
language_to_news_path = {}
for language_code, zip_file, news_file, language_name in corpus_metadata:
zip_path = tf.keras.utils.get_file(
fname=zip_file,
origin='http://opus.nlpl.eu/download.php?f=News-Commentary/v11/moses/' + zip_file,
extract=True)
news_path = os.path.join(os.path.dirname(zip_path), news_file)
language_to_sentences[language_code] = pd.read_csv(news_path, sep='\t', header=None)[0][:1000]
language_to_news_path[language_code] = news_path
print('{:,} {} sentences'.format(len(language_to_sentences[language_code]), language_name))
Downloading data from http://opus.nlpl.eu/download.php?f=News-Commentary/v11/moses/ar-en.txt.zip 24715264/24714354 [==============================] - 2s 0us/step 1,000 Arabic sentences Downloading data from http://opus.nlpl.eu/download.php?f=News-Commentary/v11/moses/en-zh.txt.zip 18104320/18101984 [==============================] - 2s 0us/step 1,000 Chinese sentences Downloading data from http://opus.nlpl.eu/download.php?f=News-Commentary/v11/moses/en-es.txt.zip 28106752/28106064 [==============================] - 2s 0us/step 1,000 English sentences Downloading data from http://opus.nlpl.eu/download.php?f=News-Commentary/v11/moses/en-ru.txt.zip 24854528/24849511 [==============================] - 2s 0us/step 1,000 Russian sentences 1,000 Spanish sentences
استفاده از یک مدل از پیش آموزش داده شده برای تبدیل جملات به بردار
ما محاسبه درونه گیریها در دسته به طوری که آنها در RAM GPU را جا داد.
# Takes about 3 minutes
batch_size = 2048
language_to_embeddings = {}
for language_code, zip_file, news_file, language_name in corpus_metadata:
print('\nComputing {} embeddings'.format(language_name))
with tqdm(total=len(language_to_sentences[language_code])) as pbar:
for batch in pd.read_csv(language_to_news_path[language_code], sep='\t',header=None, chunksize=batch_size):
language_to_embeddings.setdefault(language_code, []).extend(embed_text(batch[0]))
pbar.update(len(batch))
0%| | 0/1000 [00:00<?, ?it/s] Computing Arabic embeddings 83178it [00:30, 2768.60it/s] 0%| | 0/1000 [00:00<?, ?it/s] Computing Chinese embeddings 69206it [00:18, 3664.60it/s] 0%| | 0/1000 [00:00<?, ?it/s] Computing English embeddings 238853it [00:37, 6319.00it/s] 0%| | 0/1000 [00:00<?, ?it/s] Computing Russian embeddings 190092it [00:34, 5589.16it/s] 0%| | 0/1000 [00:00<?, ?it/s] Computing Spanish embeddings 238819it [00:41, 5754.02it/s]
ساخت شاخصی از بردارهای معنایی
ما با استفاده از SimpleNeighbors کتابخانه --- که یک wrapper برای آزار کتابخانه --- به نحو احسن نگاه کردن نتایج از لاشه.
%%time
# Takes about 8 minutes
num_index_trees = 40
language_name_to_index = {}
embedding_dimensions = len(list(language_to_embeddings.values())[0][0])
for language_code, zip_file, news_file, language_name in corpus_metadata:
print('\nAdding {} embeddings to index'.format(language_name))
index = SimpleNeighbors(embedding_dimensions, metric='dot')
for i in trange(len(language_to_sentences[language_code])):
index.add_one(language_to_sentences[language_code][i], language_to_embeddings[language_code][i])
print('Building {} index with {} trees...'.format(language_name, num_index_trees))
index.build(n=num_index_trees)
language_name_to_index[language_name] = index
0%| | 1/1000 [00:00<02:21, 7.04it/s] Adding Arabic embeddings to index 100%|██████████| 1000/1000 [02:06<00:00, 7.90it/s] 0%| | 1/1000 [00:00<01:53, 8.84it/s] Building Arabic index with 40 trees... Adding Chinese embeddings to index 100%|██████████| 1000/1000 [02:05<00:00, 7.99it/s] 0%| | 1/1000 [00:00<01:59, 8.39it/s] Building Chinese index with 40 trees... Adding English embeddings to index 100%|██████████| 1000/1000 [02:07<00:00, 7.86it/s] 0%| | 1/1000 [00:00<02:17, 7.26it/s] Building English index with 40 trees... Adding Russian embeddings to index 100%|██████████| 1000/1000 [02:06<00:00, 7.91it/s] 0%| | 1/1000 [00:00<02:03, 8.06it/s] Building Russian index with 40 trees... Adding Spanish embeddings to index 100%|██████████| 1000/1000 [02:07<00:00, 7.84it/s] Building Spanish index with 40 trees... CPU times: user 11min 21s, sys: 2min 14s, total: 13min 35s Wall time: 10min 33s
%%time
# Takes about 13 minutes
num_index_trees = 60
print('Computing mixed-language index')
combined_index = SimpleNeighbors(embedding_dimensions, metric='dot')
for language_code, zip_file, news_file, language_name in corpus_metadata:
print('Adding {} embeddings to mixed-language index'.format(language_name))
for i in trange(len(language_to_sentences[language_code])):
annotated_sentence = '({}) {}'.format(language_name, language_to_sentences[language_code][i])
combined_index.add_one(annotated_sentence, language_to_embeddings[language_code][i])
print('Building mixed-language index with {} trees...'.format(num_index_trees))
combined_index.build(n=num_index_trees)
0%| | 1/1000 [00:00<02:00, 8.29it/s] Computing mixed-language index Adding Arabic embeddings to mixed-language index 100%|██████████| 1000/1000 [02:06<00:00, 7.92it/s] 0%| | 1/1000 [00:00<02:24, 6.89it/s] Adding Chinese embeddings to mixed-language index 100%|██████████| 1000/1000 [02:05<00:00, 7.95it/s] 0%| | 1/1000 [00:00<02:05, 7.98it/s] Adding English embeddings to mixed-language index 100%|██████████| 1000/1000 [02:06<00:00, 7.88it/s] 0%| | 1/1000 [00:00<02:18, 7.20it/s] Adding Russian embeddings to mixed-language index 100%|██████████| 1000/1000 [02:04<00:00, 8.03it/s] 0%| | 1/1000 [00:00<02:17, 7.28it/s] Adding Spanish embeddings to mixed-language index 100%|██████████| 1000/1000 [02:06<00:00, 7.90it/s] Building mixed-language index with 60 trees... CPU times: user 11min 18s, sys: 2min 13s, total: 13min 32s Wall time: 10min 30s
بررسی کنید که موتور جستجوی شباهت معنایی کار می کند
در این بخش نشان خواهیم داد:
- قابلیتهای جستجوی معنایی: بازیابی جملاتی از مجموعه که از نظر معنایی مشابه پرس و جو داده شده است.
- قابلیت های چند زبانه: انجام این کار در چندین زبان زمانی که زبان و زبان فهرست بندی مطابقت دارند
- قابلیت های بین زبانی: صدور پرس و جوها به زبانی مجزا از مجموعه نمایه شده
- مجموعه زبان مختلط: همه موارد فوق در یک فهرست واحد حاوی ورودیهایی از همه زبانها
قابلیت جستجوی معنایی متقابل زبانی
در این بخش نحوه بازیابی جملات مربوط به مجموعه ای از جملات نمونه انگلیسی را نشان می دهیم. چیزهایی که باید امتحان کنید:
- چند جمله نمونه مختلف را امتحان کنید
- سعی کنید تعداد نتایج برگشتی را تغییر دهید (آنها به ترتیب شباهت برگردانده می شوند)
- سعی کنید قابلیت های متقابل زبانه با بازگشت نتایج به زبان های مختلف (ممکن است بخواهید به استفاده از گوگل ترجمه در برخی از نتایج به زبان مادری خود را برای بررسی سلامت عقل)
sample_query = 'The stock market fell four points.'
index_language = 'English'
num_results = 10
query_embedding = embed_text(sample_query)[0]
search_results = language_name_to_index[index_language].nearest(query_embedding, n=num_results)
print('{} sentences similar to: "{}"\n'.format(index_language, sample_query))
search_results
English sentences similar to: "The stock market fell four points." ['Nobel laureate Amartya Sen attributed the European crisis to four failures – political, economic, social, and intellectual.', 'Just last December, fellow economists Martin Feldstein and Nouriel Roubini each penned op-eds bravely questioning bullish market sentiment, sensibly pointing out gold’s risks.', 'His ratings have dipped below 50% for the first time.', 'As a result, markets were deregulated, making it easier to trade assets that were perceived to be safe, but were in fact not.', 'Consider the advanced economies.', 'But the agreement has three major flaws.', 'This “predetermined equilibrium” thinking – reflected in the view that markets always self-correct – led to policy paralysis until the Great Depression, when John Maynard Keynes’s argument for government intervention to address unemployment and output gaps gained traction.', 'Officials underestimated tail risks.', 'Consider a couple of notorious examples.', 'Stalin was content to settle for an empire in Eastern Europe.']
قابلیت های ترکیبی
اکنون یک پرس و جو به زبان انگلیسی صادر می کنیم، اما نتایج از هر یک از زبان های نمایه شده به دست می آیند.
sample_query = 'The stock market fell four points.'
num_results = 40
query_embedding = embed_text(sample_query)[0]
search_results = language_name_to_index[index_language].nearest(query_embedding, n=num_results)
print('{} sentences similar to: "{}"\n'.format(index_language, sample_query))
search_results
English sentences similar to: "The stock market fell four points." ['Nobel laureate Amartya Sen attributed the European crisis to four failures – political, economic, social, and intellectual.', 'It was part of the 1945 consensus.', 'The end of the East-West ideological divide and the end of absolute faith in markets are historical turning points.', 'Just last December, fellow economists Martin Feldstein and Nouriel Roubini each penned op-eds bravely questioning bullish market sentiment, sensibly pointing out gold’s risks.', 'His ratings have dipped below 50% for the first time.', 'As a result, markets were deregulated, making it easier to trade assets that were perceived to be safe, but were in fact not.', 'Consider the advanced economies.', 'Since their articles appeared, the price of gold has moved up still further.', 'But the agreement has three major flaws.', 'Gold prices even hit a record-high $1,300 recently.', 'This “predetermined equilibrium” thinking – reflected in the view that markets always self-correct – led to policy paralysis until the Great Depression, when John Maynard Keynes’s argument for government intervention to address unemployment and output gaps gained traction.', 'What Failed in 2008?', 'Officials underestimated tail risks.', 'Consider a couple of notorious examples.', 'One of these species, orange roughy, has been caught commercially for only around a quarter-century, but already is being fished to the point of collapse.', 'Meanwhile, policymakers were lulled into complacency by the widespread acceptance of economic theories such as the “efficient-market hypothesis,” which assumes that investors act rationally and use all available information when making their decisions.', 'Stalin was content to settle for an empire in Eastern Europe.', 'Intelligence assets have been redirected.', 'A new wave of what the economist Joseph Schumpeter famously called “creative destruction” is under way: even as central banks struggle to maintain stability by flooding markets with liquidity, credit to business and households is shrinking.', 'It all came about in a number of ways.', 'The UN, like the dream of European unity, was also part of the 1945 consensus.', 'The End of 1945', 'The Global Economy’s New Path', 'But this scenario failed to materialize.', 'Gold prices are extremely sensitive to global interest-rate movements.', 'Fukushima has presented the world with a far-reaching, fundamental choice.', 'It was Japan, the high-tech country par excellence (not the latter-day Soviet Union) that proved unable to take adequate precautions to avert disaster in four reactor blocks.', 'Some European academics tried to argue that there was no need for US-like fiscal transfers, because any desired degree of risk sharing can, in theory, be achieved through financial markets.', '$10,000 Gold?', 'One answer, of course, is a complete collapse of the US dollar.', '1929 or 1989?', 'The goods we made were what economists call “rival" and “excludible" commodities.', 'This dream quickly faded when the Cold War divided the world into two hostile blocs. But in some ways the 1945 consensus, in the West, was strengthened by Cold War politics.', 'The first flaw is that the spending reductions are badly timed: coming as they do when the US economy is weak, they risk triggering another recession.', 'One successful gold investor recently explained to me that stock prices languished for a more than a decade before the Dow Jones index crossed the 1,000 mark in the early 1980’s.', 'Eichengreen traces our tepid response to the crisis to the triumph of monetarist economists, the disciples of Milton Friedman, over their Keynesian and Minskyite peers – at least when it comes to interpretations of the causes and consequences of the Great Depression.', "However, America's unilateral options are limited.", 'Once it was dark, a screen was set up and Mark showed home videos from space.', 'These aspirations were often voiced in the United Nations, founded in 1945.', 'Then I got distracted for about 40 years.']
سوالات خود را امتحان کنید:
query = 'The stock market fell four points.'
num_results = 30
query_embedding = embed_text(sample_query)[0]
search_results = combined_index.nearest(query_embedding, n=num_results)
print('{} sentences similar to: "{}"\n'.format(index_language, query))
search_results
English sentences similar to: "The stock market fell four points." ['(Chinese) 新兴市场的号角', '(English) It was part of the 1945 consensus.', '(Russian) Брюссель. Цунами, пронёсшееся по финансовым рынкам, является глобальной катастрофой.', '(Arabic) هناك أربعة شروط مسبقة لتحقيق النجاح الأوروبي في أفغانستان:', '(Spanish) Su índice de popularidad ha caído por primera vez por debajo del 50 por ciento.', '(English) His ratings have dipped below 50% for the first time.', '(Russian) Впервые его рейтинг опустился ниже 50%.', '(English) As a result, markets were deregulated, making it easier to trade assets that were perceived to be safe, but were in fact not.', '(Arabic) وكانت التطورات التي شهدتها سوق العمل أكثر تشجيعا، فهي على النقيض من أسواق الأصول تعكس النتائج وليس التوقعات. وهنا أيضاً كانت الأخبار طيبة. فقد أصبحت سوق العمل أكثر إحكاما، حيث ظلت البطالة عند مستوى 3.5% وكانت نسبة الوظائف إلى الطلبات المقدمة فوق مستوى التعادل.', '(Russian) Это было частью консенсуса 1945 года.', '(English) Consider the advanced economies.', '(English) Since their articles appeared, the price of gold has moved up still further.', '(Russian) Тогда они не только смогут накормить свои семьи, но и начать получать рыночную прибыль и откладывать деньги на будущее.', '(English) Gold prices even hit a record-high $1,300 recently.', '(Chinese) 另一种金融危机', '(Russian) Европейская мечта находится в кризисе.', '(English) What Failed in 2008?', '(Spanish) Pero el acuerdo alcanzado tiene tres grandes defectos.', '(English) Officials underestimated tail risks.', '(English) Consider a couple of notorious examples.', '(Spanish) Los mercados financieros pueden ser frágiles y ofrecen muy poca capacidad de compartir los riesgos relacionados con el ingreso de los trabajadores, que constituye la mayor parte de la renta de cualquier economía avanzada.', '(Chinese) 2008年败在何处?', '(Spanish) Consideremos las economías avanzadas.', '(Spanish) Los bienes producidos se caracterizaron por ser, como señalaron algunos economistas, mercancías “rivales” y “excluyentes”.', '(Arabic) إغلاق الفجوة الاستراتيجية في أوروبا', '(English) Stalin was content to settle for an empire in Eastern Europe.', '(English) Intelligence assets have been redirected.', '(Spanish) Hoy, envalentonados por la apreciación continua, algunos están sugiriendo que el oro podría llegar incluso a superar esa cifra.', '(Russian) Цены на золото чрезвычайно чувствительны к мировым движениям процентных ставок.', '(Russian) Однако у достигнутой договоренности есть три основных недостатка.']
موضوعات بیشتر
چند زبانه
در نهایت، ما شما را تشویق به سعی کنید نمایش داده شد در هر یک از زبان های پشتیبانی شده: انگلیسی، عربی، چینی، هلندی، فرانسوی، آلمانی، ایتالیایی، ژاپنی، کره ای، لهستانی، پرتغالی، روسی، اسپانیایی، تایلندی و ترکیه.
همچنین، حتی اگر ما فقط در زیرمجموعهای از زبانها فهرستبندی کردهایم، میتوانید محتوا را به هر یک از زبانهای پشتیبانیشده نیز فهرستبندی کنید.
تغییرات مدل
ما انواع مدلهای رمزگذار جهانی را ارائه میکنیم که برای موارد مختلفی مانند حافظه، تأخیر و/یا کیفیت بهینه شدهاند. لطفاً برای یافتن یک مورد مناسب با آنها آزمایش کنید.
نزدیکترین کتابخانه های همسایه
ما از Annoy برای جستجوی مؤثر نزدیکترین همسایگان استفاده کردیم. مشاهده بخش مبادلات به خواندن در مورد تعداد درختان (وابسته به حافظه) و تعداد موارد جستجو (پوشیدگی وابسته) --- SimpleNeighbors تنها اجازه می دهد تا به کنترل تعداد درختان، اما فاکتورگیری مجدد کد به استفاده آزار مستقیم باید ساده، ما فقط می خواستیم این کد را تا حد امکان برای کاربر عمومی ساده نگه داریم.
اگر آزار برای نرم افزار خود را در مقیاس نیست، لطفا نیز بررسی کنید FAISS .
بهترین ساختن برنامه های معنایی چند زبانه شما!
[1] J. Tiedemann، 2012، موازی داده، ابزار و رابط در اپوس . در مجموعه مقالات هشتمین کنفرانس بین المللی منابع و ارزشیابی زبان (LREC 2012)