|  View source on GitHub | 
Pipeline for multi-task training.
Inherits From: ModelFitPipeline, AbstractPipeline
tfr.keras.pipeline.MultiTaskPipeline(
    model_builder: tfr.keras.model.AbstractModelBuilder,
    dataset_builder: tfr.keras.pipeline.AbstractDatasetBuilder,
    hparams: tfr.keras.pipeline.PipelineHparams
)
This handles a set of losses and labels. It is intended to mainly work with
MultiLabelDatasetBuilder.
Use subclassing to customize the losses and metrics.
Example usage:
context_feature_spec = {}
example_feature_spec = {
    "example_feature_1": tf.io.FixedLenFeature(
        shape=(1,), dtype=tf.float32, default_value=0.0)
}
mask_feature_name = "list_mask"
label_spec_tuple = ("utility",
                    tf.io.FixedLenFeature(
                        shape=(1,),
                        dtype=tf.float32,
                        default_value=_PADDING_LABEL))
label_spec = {"task1": label_spec_tuple, "task2": label_spec_tuple}
weight_spec = ("weight",
               tf.io.FixedLenFeature(
                   shape=(1,), dtype=tf.float32, default_value=1.))
dataset_hparams = DatasetHparams(
    train_input_pattern="train.dat",
    valid_input_pattern="valid.dat",
    train_batch_size=128,
    valid_batch_size=128)
pipeline_hparams = PipelineHparams(
    model_dir="model/",
    num_epochs=2,
    steps_per_epoch=5,
    validation_steps=2,
    learning_rate=0.01,
    loss={
        "task1": "softmax_loss",
        "task2": "pairwise_logistic_loss"
    },
    loss_weights={
        "task1": 1.0,
        "task2": 2.0
    },
    export_best_model=True)
model_builder = MultiTaskModelBuilder(...)
dataset_builder = MultiLabelDatasetBuilder(
    context_feature_spec,
    example_feature_spec,
    mask_feature_name,
    label_spec,
    dataset_hparams,
    sample_weight_spec=weight_spec)
pipeline = MultiTaskPipeline(model_builder, dataset_builder, pipeline_hparams)
pipeline.train_and_validate(verbose=1)
Methods
build_callbacks
build_callbacks() -> List[tf.keras.callbacks.Callback]
Sets up Callbacks.
Example usage:
model_builder = ModelBuilder(...)
dataset_builder = DatasetBuilder(...)
hparams = PipelineHparams(...)
pipeline = BasicModelFitPipeline(model_builder, dataset_builder, hparams)
callbacks = pipeline.build_callbacks()
| Returns | |
|---|---|
| A list of tf.keras.callbacks.Callbackor atf.keras.callbacks.CallbackListfor tensorboard and checkpoint. | 
build_loss
build_loss() -> Dict[str, tf.keras.losses.Loss]
See AbstractPipeline.
build_metrics
build_metrics() -> Dict[str, List[tf.keras.metrics.Metric]]
See AbstractPipeline.
build_weighted_metrics
build_weighted_metrics() -> Dict[str, List[tf.keras.metrics.Metric]]
See AbstractPipeline.
export_saved_model
export_saved_model(
    model: tf.keras.Model,
    export_to: str,
    checkpoint: Optional[tf.train.Checkpoint] = None
)
Exports the trained model with signatures.
Example usage:
model_builder = ModelBuilder(...)
dataset_builder = DatasetBuilder(...)
hparams = PipelineHparams(...)
pipeline = BasicModelFitPipeline(model_builder, dataset_builder, hparams)
pipeline.export_saved_model(model_builder.build(), 'saved_model/')
| Args | |
|---|---|
| model | Model to be saved. | 
| export_to | Specifies the directory the model is be exported to. | 
| checkpoint | If given, export the model with weights from this checkpoint. | 
train_and_validate
train_and_validate(
    verbose=0
)
Main function to train the model with TPU strategy.
Example usage:
context_feature_spec = {}
example_feature_spec = {
    "example_feature_1": tf.io.FixedLenFeature(
        shape=(1,), dtype=tf.float32, default_value=0.0)
}
mask_feature_name = "list_mask"
label_spec = {
    "utility": tf.io.FixedLenFeature(
        shape=(1,), dtype=tf.float32, default_value=0.0)
}
dataset_hparams = DatasetHparams(
    train_input_pattern="train.dat",
    valid_input_pattern="valid.dat",
    train_batch_size=128,
    valid_batch_size=128)
pipeline_hparams = pipeline.PipelineHparams(
    model_dir="model/",
    num_epochs=2,
    steps_per_epoch=5,
    validation_steps=2,
    learning_rate=0.01,
    loss="softmax_loss")
model_builder = SimpleModelBuilder(
    context_feature_spec, example_feature_spec, mask_feature_name)
dataset_builder = SimpleDatasetBuilder(
    context_feature_spec,
    example_feature_spec,
    mask_feature_name,
    label_spec,
    dataset_hparams)
pipeline = BasicModelFitPipeline(
    model_builder, dataset_builder, pipeline_hparams)
pipeline.train_and_validate(verbose=1)
| Args | |
|---|---|
| verbose | An int for the verbosity level. |