tfl.pwl_calibration_lib.verify_hyperparameters
Stay organized with collections
Save and categorize content based on your preferences.
Verifies that all given hyperparameters are consistent.
tfl.pwl_calibration_lib.verify_hyperparameters(
input_keypoints=None,
output_min=None,
output_max=None,
monotonicity=None,
convexity=None,
is_cyclic=False,
lengths=None,
weights_shape=None,
input_keypoints_type=None
)
See PWLCalibration class level comment for detailed description of arguments.
Args |
input_keypoints
|
input_keypoints of PWLCalibration layer.
|
output_min
|
Smallest output of PWLCalibration layer.
|
output_max
|
Largest output of PWLCalibration layer.
|
monotonicity
|
monotonicity hyperparameter of PWLCalibration layer.
|
convexity
|
convexity hyperparameter of PWLCalibration layer.
|
is_cyclic
|
is_cyclic hyperparameter of PWLCalibration layer.
|
lengths
|
Lengths of pieces of piecewise linear function.
|
weights_shape
|
Shape of weights of PWLCalibration layer.
|
input_keypoints_type
|
The type of input keypoints of a PWLCalibration layer.
|
Raises |
ValueError
|
If something is inconsistent.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-08-02 UTC.
[null,null,["Last updated 2024-08-02 UTC."],[],[],null,["# tfl.pwl_calibration_lib.verify_hyperparameters\n\n\u003cbr /\u003e\n\n|---------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/lattice/blob/v2.1.1/tensorflow_lattice/python/pwl_calibration_lib.py#L888-L963) |\n\nVerifies that all given hyperparameters are consistent. \n\n tfl.pwl_calibration_lib.verify_hyperparameters(\n input_keypoints=None,\n output_min=None,\n output_max=None,\n monotonicity=None,\n convexity=None,\n is_cyclic=False,\n lengths=None,\n weights_shape=None,\n input_keypoints_type=None\n )\n\nSee PWLCalibration class level comment for detailed description of arguments.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------------------|--------------------------------------------------------|\n| `input_keypoints` | `input_keypoints` of PWLCalibration layer. |\n| `output_min` | Smallest output of PWLCalibration layer. |\n| `output_max` | Largest output of PWLCalibration layer. |\n| `monotonicity` | `monotonicity` hyperparameter of PWLCalibration layer. |\n| `convexity` | `convexity` hyperparameter of PWLCalibration layer. |\n| `is_cyclic` | `is_cyclic` hyperparameter of PWLCalibration layer. |\n| `lengths` | Lengths of pieces of piecewise linear function. |\n| `weights_shape` | Shape of weights of PWLCalibration layer. |\n| `input_keypoints_type` | The type of input keypoints of a PWLCalibration layer. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|-------------------------------|\n| `ValueError` | If something is inconsistent. |\n\n\u003cbr /\u003e"]]