|  View source on GitHub | 
Config for calibrated lattice model.
tfl.configs.CalibratedLatticeConfig(
    feature_configs=None,
    interpolation='hypercube',
    parameterization='all_vertices',
    num_terms=2,
    regularizer_configs=None,
    output_min=None,
    output_max=None,
    output_calibration=False,
    output_calibration_num_keypoints=10,
    output_initialization='quantiles',
    output_calibration_input_keypoints_type='fixed',
    random_seed=0
)
Used in the notebooks
| Used in the tutorials | 
|---|
A calibrated lattice model applies piecewise-linear and categorical calibration on the input feature, followed by a lattice model and an optional output piecewise-linear calibration.
Example:
model_config = tfl.configs.CalibratedLatticeConfig(
    feature_configs=[...],
)
feature_analysis_input_fn = create_input_fn(num_epochs=1, ...)
train_input_fn = create_input_fn(num_epochs=100, ...)
estimator = tfl.estimators.CannedClassifier(
    feature_columns=feature_columns,
    model_config=model_config,
    feature_analysis_input_fn=feature_analysis_input_fn)
estimator.train(input_fn=train_input_fn)
| Args | |
|---|---|
| feature_configs | A list of tfl.configs.FeatureConfiginstances that
specify configurations for each feature. If a configuration is not
provided for a feature, a default configuration will be used. | 
| interpolation | One of 'hypercube' or 'simplex' interpolation. For a
d-dimensional lattice, 'hypercube' interpolates 2^d parameters, whereas
'simplex' uses d+1 parameters and thus scales better. For details see tfl.lattice_lib.evaluate_with_simplex_interpolationandtfl.lattice_lib.evaluate_with_hypercube_interpolation. | 
| parameterization | The parameterization of the lattice function class to
use. A lattice function is uniquely determined by specifying its value
on every lattice vertex. A parameterization scheme is a mapping from a
vector of parameters to a multidimensional array of lattice vertex
values. It can be one of: 
 | 
| num_terms | The number of terms in a lattice using 'kronecker_factored'parameterization. Ignored if parameterization is set to'all_vertices'. | 
| regularizer_configs | A list of tfl.configs.RegularizerConfiginstances
that apply global regularization. | 
| output_min | Lower bound constraint on the output of the model. | 
| output_max | Upper bound constraint on the output of the model. | 
| output_calibration | If a piecewise-linear calibration should be used on the output of the lattice. | 
| output_calibration_num_keypoints | Number of keypoints to use for the output piecewise-linear calibration. | 
| output_initialization | The initial values to setup for the output of the
model. When using output calibration, these values are used to
initialize the output keypoints of the output piecewise-linear
calibration. Otherwise the lattice parameters will be setup to form a
linear function in the range of output_initialization. It can be one of: 'quantiles': Output is initliazed to label quantiles, if
possible.'uniform': Output is initliazed uniformly in label range. | 
| output_calibration_input_keypoints_type | One of "fixed" or
"learned_interior". If "learned_interior", keypoints are initialized to
the values in pwl_calibration_input_keypointsbut then allowed to vary
during training, with the exception of the first and last keypoint
location which are fixed. | 
| random_seed | Random seed to use for initialization of a lattice with 'kronecker_factored'parameterization. Ignored if parameterization is
set to'all_vertices'. | 
Methods
deserialize_nested_configs
@classmethoddeserialize_nested_configs( config, custom_objects=None )
Returns a deserialized configuration dictionary.
feature_config_by_name
feature_config_by_name(
    feature_name
)
Returns existing or default FeatureConfig with the given name.
from_config
@classmethodfrom_config( config, custom_objects=None )
get_config
get_config()
Returns a configuration dictionary.
regularizer_config_by_name
regularizer_config_by_name(
    regularizer_name
)
Returns existing or default RegularizerConfig with the given name.