Initializes PWL calibration layer to represent linear function.
tfl.pwl_calibration_layer.UniformOutputInitializer(
    output_min, output_max, monotonicity, keypoints=None
)
PWL calibration layer weights are one-d tensor. First element of tensor
represents bias. All remaining represent delta in y-value compare to previous
point. Aka heights of segments.
Args | 
output_min
 | 
Minimum value of PWL calibration output after initialization.
 | 
output_max
 | 
Maximum value of PWL calibration output after initialization.
 | 
monotonicity
 | 
- if 'none' or 'increasing', the returned function will go from
(input_min, output_min) to (input_max, output_max). 
- if 'decreasing', the returned function will go from
(input_min, output_max) to (input_max, output_min).
   | 
keypoints
 | 
- if not provided (None or []), all pieces of returned function
will have equal heights (i.e. 
y[i+1] - y[i] is constant). 
 
if provided, all pieces of returned function will have equal slopes
(i.e. (y[i+1] - y[i]) / (x[i+1] - x[i]) is constant).
 | 
Methods
from_config
@classmethod
from_config(
    config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
| Args | 
config
 | 
A Python dictionary, the output of get_config().
 | 
| Returns | 
An Initializer instance.
 | 
get_config
View source
get_config()
Standard Keras config for serialization.
__call__
View source
__call__(
    shape, dtype=None, partition_info=None
)
Returns weights of PWL calibration layer.
| Args | 
shape
 | 
Must be a collection of the form (k, units) where k >= 2.
 | 
dtype
 | 
Standard Keras initializer param.
 | 
partition_info
 | 
Standard Keras initializer param.
 | 
| Returns | 
| 
Weights of PWL calibration layer.
 | 
| Raises | 
ValueError
 | 
If requested shape is invalid for PWL calibration layer
weights.
 |