|  View source on GitHub | 
Monotonicity and bounds constraints for PWL calibration layer.
tfl.pwl_calibration_layer.PWLCalibrationConstraints(
    monotonicity='none',
    convexity='none',
    lengths=None,
    output_min=None,
    output_max=None,
    output_min_constraints=tfl.pwl_calibration_lib.BoundConstraintsType.NONE,
    output_max_constraints=tfl.pwl_calibration_lib.BoundConstraintsType.NONE,
    num_projection_iterations=8
)
Applies an approximate L2 projection to the weights of a PWLCalibration layer such that the result satisfies the specified constraints.
| Args | |
|---|---|
| monotonicity | Same meaning as corresponding parameter of PWLCalibration. | 
| convexity | Same meaning as corresponding parameter of PWLCalibration. | 
| lengths | Lengths of pieces of piecewise linear function. Needed only if convexity is specified. | 
| output_min | Minimum possible output of pwl function. | 
| output_max | Maximum possible output of pwl function. | 
| output_min_constraints | A tfl.pwl_calibration_lib.BoundConstraintsTypedescribing the constraints on the layer's minimum value. | 
| output_max_constraints | A tfl.pwl_calibration_lib.BoundConstraintsTypedescribing the constraints on the layer's maximum value. | 
| num_projection_iterations | Same meaning as corresponding parameter of PWLCalibration. | 
Methods
from_config
@classmethodfrom_config( config )
Instantiates a weight constraint from a configuration dictionary.
Example:
constraint = UnitNorm()
config = constraint.get_config()
constraint = UnitNorm.from_config(config)
| Args | |
|---|---|
| config | A Python dictionary, the output of get_config. | 
| Returns | |
|---|---|
| A tf.keras.constraints.Constraintinstance. | 
get_config
get_config()
Standard Keras config for serialization.
__call__
__call__(
    w
)
Applies constraints to w.