|  View source on GitHub | 
Laplacian regularizer for tfl.layers.Lattice layer.
tfl.lattice_layer.LaplacianRegularizer(
    lattice_sizes, l1=0.0, l2=0.0
)
Laplacian regularizer penalizes the difference between adjacent vertices in multi-cell lattice (see publication).
Consider a 3 x 2 lattice with weights w:
w[3]-----w[4]-----w[5]
  |        |        |
  |        |        |
w[0]-----w[1]-----w[2]
where the number at each node represents the weight index. In this case, the laplacian regularizer is defined as:
l1[0] * (|w[1] - w[0]| + |w[2] - w[1]| +
         |w[4] - w[3]| + |w[5] - w[4]|) +
l1[1] * (|w[3] - w[0]| + |w[4] - w[1]| + |w[5] - w[2]|) +
l2[0] * ((w[1] - w[0])^2 + (w[2] - w[1])^2 +
         (w[4] - w[3])^2 + (w[5] - w[4])^2) +
l2[1] * ((w[3] - w[0])^2 + (w[4] - w[1])^2 + (w[5] - w[2])^2)
| Args | |
|---|---|
| lattice_sizes | Lattice sizes of tfl.layers.Latticeto regularize. | 
| l1 | l1 regularization amount. Either single float or list or tuple of floats to specify different regularization amount per dimension. | 
| l2 | l2 regularization amount. Either single float or list or tuple of floats to specify different regularization amount per dimension. | 
| Raises | |
|---|---|
| ValueError | If provided input does not correspond to lattice_sizes. | 
Methods
from_config
@classmethodfrom_config( config )
Creates a regularizer from its config.
This method is the reverse of get_config,
capable of instantiating the same regularizer from the config
dictionary.
This method is used by TF-Keras model_to_estimator, saving and
loading models to HDF5 formats, TF-Keras model cloning, some
visualization utilities, and exporting models to and from JSON.
| Args | |
|---|---|
| config | A Python dictionary, typically the output of get_config. | 
| Returns | |
|---|---|
| A regularizer instance. | 
get_config
get_config()
Standard Keras config for serialization.
__call__
__call__(
    x
)
Returns regularization loss for x.