View source on GitHub |
Trains and validates differentially private logistic regression model.
tf_privacy.logistic_objective_perturbation(
train_dataset: datasets.RegressionDataset,
test_dataset: datasets.RegressionDataset,
epsilon: float,
delta: float,
epochs: int,
num_classes: int,
input_clipping_norm: float
) -> List[float]
The training is based on the Algorithm 1 of Kifer et al.
Returns | |
---|---|
List of test accuracies (one for each epoch) on test_dataset of model trained on train_dataset. |