Trains a single layer neural network classifier with softmax activation.
tf_privacy.single_layer_softmax_classifier(
train_dataset: datasets.RegressionDataset,
test_dataset: datasets.RegressionDataset,
epochs: int,
num_classes: int,
optimizer: tf.keras.optimizers.Optimizer,
loss: Union[tf.keras.losses.Loss, str] = 'categorical_crossentropy',
batch_size: int = 32,
kernel_regularizer: Optional[tf.keras.regularizers.Regularizer] = None
) -> Tuple[Any, List[float]]
Args |
train_dataset
|
consists of num_train many labeled examples, where the labels
are in {0,1,...,num_classes-1}.
|
test_dataset
|
consists of num_test many labeled examples, where the labels
are in {0,1,...,num_classes-1}.
|
epochs
|
the number of epochs.
|
num_classes
|
the number of classes.
|
optimizer
|
a tf.keras optimizer.
|
loss
|
a tf.keras loss function.
|
batch_size
|
a positive integer.
|
kernel_regularizer
|
a regularization function.
|
Returns |
List of test accuracies (one for each epoch) on test_dataset of model
trained on train_dataset.
|